Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

OpenArt的ComfyUI怎么打开

Answer

要打开 OpenArt 的 ComfyUI,您可以按照以下步骤进行操作:

  1. 准备相关模型和工作流:
    • t5xxl_fp16.safetensors 和 clip_l.safetensors 下载地址:https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main 。t5xxl 分为 fp16 和 fp8,如果内存超过 32GB,用 fp16 的,没超过则用 fp8 的。
    • ae.safetensors 和 flux1-dev.safetensors 下载地址:https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main 。
    • 准备好 dev 的工作流:file:dev 的官方原版 workflow.json ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,将图片导入 ComfyUI 就是工作流。
    • 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main 。
    • 相关模型的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ;百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h 提取码:ub9h 。
  2. 打开 ComfyUI,把准备好的工作流或图片拖拽到 ComfyUI 里。
  3. 在处理模型连接时,如果将 refiner 的模型连上提示词导致第一个 base 模型的链接断开,可以通过以下方式解决:加入一个新节点,右键点击 -【新建节点】-【实用工具】-【Primitive 元节点】。这个节点连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】,此时文本节点上会多一个文本的连接点。将元节点与文本节点相连接,元节点就变成了正向提示词的输入框。同理,负向提示词框也可用元节点代替。再复制出一套正负提示词节点,一套给 base 模型,一套给 refiner 模型。然后,base 模型的那一套输出给第一个采样器节点,refiner 模型的那一套输出给第二个采样器节点。最后,能输出两个图像节点,第一个链接 base 模型的 vae,设置为预览图像;第二个链接一个 VAE 加载器的节点,加载 sdxl 自带的 vae,设置为保存图像,即最终输出的图像。设置好两个模型和提示词,点击生成。
Content generated by AI large model, please carefully verify (powered by aily)

References

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

[title]【ComfyUI】使用ComfyUI玩SDXL的正确打开方式但是,现在问题来了。如果我将refiner的模型连上提示词的话,第一个base模型的链接就会断开,怎么样才能让两个模型同时起作用呢?我们来加入一个新节点,右键点击-【新建节点】-【实用工具】-【Primitive元节点】。这个节点很有意思,它连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】。此时,文本节点上就多了一个文本的连接点。将元节点与文本节点相连接,这时元节点就变成了正向提示词的输入框。同理,可以将负向提示词框也用元节点代替。再复制出一套正负提示词节点,一套给base模型,一套给refiner模型。然后,base模型的那一套输出给第一个采样器节点,refiner模型的那一套输出给第二个采样器节点。最后,我们能可以输出两个图像节点,第一个链接base模型的vae,可以设置为预览图像;第二个链接一个VAE加载器的节点,加载sdxl自带的vae,设置为保存图像,也就是我们最终输出的图像。使用这个工作流我们来跑一张sdxl模型的图片,设置好两个模型和提示词,点击生成。

工具教程:Flux

https://huggingface.co/comfyanonymous/flux_text_encoders/tree/maint5xxl分为fp16和fp8,如果你内存超过32GB,那就用fp16的,如果没超过,那就用fp8的。[heading4]ae.safetensors和flux1-dev.safetensors下载地址:[content]https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:file:dev的官方原版workflow.json上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

工具教程:Flux

https://huggingface.co/comfyanonymous/flux_text_encoders/tree/maint5xxl分为fp16和fp8,如果你内存超过32GB,那就用fp16的,如果没超过,那就用fp8的。[heading4]ae.safetensors和flux1-dev.safetensors下载地址:[content]https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:file:dev的官方原版workflow.json上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

Others are asking
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
如何凭借comfyUI,成为自由职业工作者
ComfyUI 是一种具有独特特点和优势的工具,以下是关于如何凭借它成为自由职业工作者的相关内容: ComfyUI 的概念和重要性: ComfyUI 的 UI 界面相较于 SD WebUI 更为复杂,除输入框外还有很多块状元素和复杂连线。 虽然学习成本较高,但连线并不复杂,小方块与 SD WebUI 的输入框和按钮作用相同,都是对参数进行配置,连线类似搭建自动化工作流,从左到右依次运行。 ComfyUI 的功能和优势: 从功能角度看,它与 SD WebUI 提供的功能相同,但以连线方式呈现。 通过改变节点可实现不同功能,如一个是直接加载图片,一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 选择 ComfyUI 的核心原因在于其自由和拓展性,可根据自身需求搭建适合自己的工作流,无需依赖开发者,还能开发并改造节点。 ComfyUI 的基础界面和操作: 熟悉基本界面,如创建第一个工作流时,要进行加载 Latent(设置图片宽高和批次)、加载 VAE 等操作。 节点分为起始节点、最终输出节点和过程执行节点,将各节点按规则串联,如 checkpoint 加载器、CLIP 对应链接正向和负向提示词等,最终得到工作流。 要成为凭借 ComfyUI 的自由职业工作者,需要多练习和使用,尝试通过变现图片获取收益。
2025-02-10
可以不学sd而是直接学comfyui
学习 ComfyUI 而不先学习 SD 是可行的。ComfyUI 具有一些独特的优势,例如更接近 SD 的底层工作原理,能够实现自动化工作流以消灭重复性工作,作为强大的可视化后端工具还能实现 SD 之外的功能,如调用 API 等,并且可根据定制需求开发节点或模块。 比如,有人基于 ComfyUI 中的创建了工作流,不仅能用于绿幕素材的抠图,还能自动生成定制需求的抠图素材,全程只需几秒。 在电脑硬件方面,使用 ComfyUI 时,系统要求 Windows7 以上,显卡要求 NVDIA 独立显卡且显存至少 4G 起步,硬盘需留有至少 100G 空间(包括模型)。但 mac 系统、AMD 显卡、低显卡的情况也能安装使用,只是功能不全、出错率偏高,严重影响使用体验,建议升级设备或采用云服务器。
2025-02-08
ComfyUI教程
以下是一些关于 ComfyUI 的学习教程资源: 1. ComfyUI 官方文档:提供使用手册和安装指南,适合初学者和有经验的用户,可在获取相关信息。 2. 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容,教程地址是。 3. 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户,可在找到相关教程。 4. Bilibili:提供了从新手入门到精通各个阶段的系列视频教程,可在查看。 此外,还有以下教程: 1. 一个全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 2. 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: 1. seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 2. control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 3. step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 4. cfg:一般设置在 6 8 之间较好。 5. sampler_name:可通过此设置采样器算法。 6. scheduler:控制每个步骤中去噪的过程,可选择不同调度算法。 7. denoise:表示要增加的初始噪声,文生图一般默认设置为 1。 内容由 AI 大模型生成,请仔细甄别。
2025-02-07
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动速度快,出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,功能不全,出错率偏高,严重影响使用体验个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2025-02-07
comfyui 官网
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以把它想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 的官方链接为:https://github.com/comfyanonymous/ComfyUI 。 关于 ComfyUI 的学习资料,有以下几个网站提供相关教程: 1. ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网站为:https://www.comfyuidoc.com/zh/ 。 2. 优设网:提供了详细的入门教程,适合初学者。教程地址是:https://www.uisdc.com/comfyui3 。 3. 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。地址:https://zhuanlan.zhihu.com/p/662041596 。 4. Bilibili:提供了一系列从新手入门到精通的视频教程。地址:https://www.bilibili.com/video/BV14r4y1d7r8/ 。 此外,在知乎的“深入浅出完整解析 Stable Diffusion(SD)核心基础知识”中,也有关于零基础使用 ComfyUI 搭建 Stable Diffusion 推理流的内容。
2025-01-23
在智能体。目录下的体验地址都打不开。为什么?怎么能打开?
很抱歉,暂时不清楚智能体目录下体验地址打不开的具体原因。可能是网络问题、服务器故障、链接失效等多种因素导致。您可以尝试以下方法: 1. 检查您的网络连接,确保网络稳定畅通。 2. 刷新页面或更换浏览器再次尝试访问。 3. 确认该体验地址是否仍在有效服务期内。 4. 若问题仍未解决,建议您联系相关技术支持人员获取帮助。
2025-01-06
串口通信接收端在正常接收数据,这时把串口关闭再打开后收不到数据了
串口通信中,当接收端正常接收数据时,关闭串口再打开后收不到数据,可能存在以下几种原因: 1. 硬件连接问题:重新开关串口可能导致硬件连接出现异常,例如接口松动、线缆损坏等。 2. 驱动程序问题:串口的驱动在关闭和重新打开的过程中可能出现错误或未正确加载。 3. 配置参数丢失:关闭串口可能导致之前设置的一些关键配置参数丢失,如波特率、数据位、停止位等。 4. 缓冲区问题:串口的接收缓冲区在关闭和重新打开时可能未被正确初始化或处理,导致数据丢失或接收异常。 建议您依次检查上述可能的原因,以确定并解决问题。
2024-12-27
帮我生成一个小程序,功能涉及“个人多名片管理”“可以通过扫描纸质名片生成电子名片、手动填写信息生成电子名片、关键字词ai智能生成名片”“支持手动编辑名片信息”“每个信息都可以通过ai生成及润色”“支持添加案例”“支持客户名片管理”“分享客户后,客户打开名片,支持交换信息并生成自己的名片”
要开发您所描述的涉及“个人多名片管理”等功能的小程序,以下是一些参考步骤和相关信息: 微信小程序开发基础: 1. 注册小程序:登录微信公众号首页,选取小程序,用新邮箱绑定注册。 2. 小程序信息填写:注册验证通过后,填写小程序信息和类目,名称可根据功能设定,头像可网上获取或利用工具生成。 3. 开发者工具下载:回到发布流程页面,点击“普通小程序开发者工具”,选择“微信开发者工具”,下载 windows 64 位版本。 4. 创建小程序项目:打开下载好的微信开发者工具,选择创建小程序。注意获取账号信息中的 id,选择不使用云服务,并选择 javascript 基础模板。 相关案例: 1. 有“使用 GPT 的视觉功能和 TTS API 处理和讲述视频”的案例,演示了如何通过视频使用 GPT 的视觉功能。 2. “开发:GLM 等大模型外接数据库”的案例,可调整 prompt,匹配不同知识库,让 LLM 扮演不同角色,如财务分析师、智能客服等。 目前没有与您需求完全匹配的直接可用的开发案例,但您可以参考上述基础步骤和相关案例的思路,结合您的具体需求进行开发。
2024-11-25
有没有国内网络能打开的免费好用的美术类AI工具?
以下为您推荐国内网络能打开的免费好用的美术类 AI 工具: 1. 扣子 + ByteArtist 网址:https://www.coze.cn/home 优点:不需要翻墙,无收费,可以直接生成 注册:手机号、抖音号或飞书号 操作步骤:需要在 coze 的 bot 里面添加绘图插件 时间:5min 2. 无界 AI 网址:https://www.wujieai.cc/ 优点:国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用 希望这些工具能满足您的需求。
2024-11-11
寻找可以对电脑桌面打开的PDF文档、网址进行总结的ai
以下是一些可以对电脑桌面打开的 PDF 文档、网址进行总结的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 此外,还有一些相关的工具和网站: 1. AI PDF(与免费帐户。它消除了重复上传文件的需要。PRO 版本可以搜索 1000 个 PDF 和 OCR 文档,为冗长的文档提供上级摘要。 2. TXYZ 网站:是一个帮助大家搜索、查询专业文献并可以进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-24
我刚打开飞书知识库,新手小白要怎么学习?我想对所有的Ai工具有着熟练的使用,先学习什么,再学习什么
对于新手学习 AI 并熟练使用相关工具,建议按以下步骤进行: 1. 掌握提示词技巧:提示词上手容易且很有用。 2. 实践和尝试: 理论学习后通过实践巩固知识,尝试使用各种产品制作作品。 参考飞书知识库中大家实践后的作品和文章分享,并积极分享自己的实践成果。 3. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 4. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,了解最新发展。 加入 AI 相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 如果希望继续精进,还可以学习以下内容: 1. Python 相关: 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态。 异常处理:理解异常,学习使用 try 和 except 语句处理错误。 文件操作:学习文件读写、文件与路径操作。 2. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解线性回归、决策树、支持向量机(SVM)等常用算法。 无监督学习:熟悉聚类、降维等算法。 另外,学习 AI 还可以: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 术语和基础概念,包括主要分支及它们之间的联系。 浏览入门文章,了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入钻研。 学习 AI 是一个长期过程,需要耐心和持续努力,不要害怕犯错,每个挑战都是成长机会,随着时间推移,您将逐渐建立起自己的 AI 知识体系并取得成就。
2024-08-21