直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

OpenArt的ComfyUI怎么打开

回答

要打开 OpenArt 的 ComfyUI,您可以按照以下步骤进行操作:

  1. 准备相关模型和工作流:
    • t5xxl_fp16.safetensors 和 clip_l.safetensors 下载地址:https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main 。t5xxl 分为 fp16 和 fp8,如果内存超过 32GB,用 fp16 的,没超过则用 fp8 的。
    • ae.safetensors 和 flux1-dev.safetensors 下载地址:https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main 。
    • 准备好 dev 的工作流:file:dev 的官方原版 workflow.json ,或者使用官方原版的图片链接 https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png ,将图片导入 ComfyUI 就是工作流。
    • 对于 GPU 性能不足、显存不够的情况,底模可以使用 fp8 的量化版模型,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main 。
    • 相关模型的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b ;百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h 提取码:ub9h 。
  2. 打开 ComfyUI,把准备好的工作流或图片拖拽到 ComfyUI 里。
  3. 在处理模型连接时,如果将 refiner 的模型连上提示词导致第一个 base 模型的链接断开,可以通过以下方式解决:加入一个新节点,右键点击 -【新建节点】-【实用工具】-【Primitive 元节点】。这个节点连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】,此时文本节点上会多一个文本的连接点。将元节点与文本节点相连接,元节点就变成了正向提示词的输入框。同理,负向提示词框也可用元节点代替。再复制出一套正负提示词节点,一套给 base 模型,一套给 refiner 模型。然后,base 模型的那一套输出给第一个采样器节点,refiner 模型的那一套输出给第二个采样器节点。最后,能输出两个图像节点,第一个链接 base 模型的 vae,设置为预览图像;第二个链接一个 VAE 加载器的节点,加载 sdxl 自带的 vae,设置为保存图像,即最终输出的图像。设置好两个模型和提示词,点击生成。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【ComfyUI】使用ComfyUI玩SDXL的正确打开方式

[title]【ComfyUI】使用ComfyUI玩SDXL的正确打开方式但是,现在问题来了。如果我将refiner的模型连上提示词的话,第一个base模型的链接就会断开,怎么样才能让两个模型同时起作用呢?我们来加入一个新节点,右键点击-【新建节点】-【实用工具】-【Primitive元节点】。这个节点很有意思,它连接谁,就会变成谁的属性。在文本节点上单击右键,选择【转换文本为输入】。此时,文本节点上就多了一个文本的连接点。将元节点与文本节点相连接,这时元节点就变成了正向提示词的输入框。同理,可以将负向提示词框也用元节点代替。再复制出一套正负提示词节点,一套给base模型,一套给refiner模型。然后,base模型的那一套输出给第一个采样器节点,refiner模型的那一套输出给第二个采样器节点。最后,我们能可以输出两个图像节点,第一个链接base模型的vae,可以设置为预览图像;第二个链接一个VAE加载器的节点,加载sdxl自带的vae,设置为保存图像,也就是我们最终输出的图像。使用这个工作流我们来跑一张sdxl模型的图片,设置好两个模型和提示词,点击生成。

工具教程:Flux

https://huggingface.co/comfyanonymous/flux_text_encoders/tree/maint5xxl分为fp16和fp8,如果你内存超过32GB,那就用fp16的,如果没超过,那就用fp8的。[heading4]ae.safetensors和flux1-dev.safetensors下载地址:[content]https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:file:dev的官方原版workflow.json上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

工具教程:Flux

https://huggingface.co/comfyanonymous/flux_text_encoders/tree/maint5xxl分为fp16和fp8,如果你内存超过32GB,那就用fp16的,如果没超过,那就用fp8的。[heading4]ae.safetensors和flux1-dev.safetensors下载地址:[content]https://huggingface.co/black-forest-labs/FLUX.1-dev/tree/main我随后也准备一下百度网盘和夸克网盘。更新:(下面准备了夸克和百度的网盘链接,方便部分同学下载)flux相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608bflux相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW-03ei0g?pwd=ub9h提取码:ub9h如果GPU性能不足、显存不够,底模可以使用fp8的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/flux-fp8/tree/main最后我们再下载dev的工作流:file:dev的官方原版workflow.json上面我把工作流复制上了,用上面这个就行。或者下面官方原版的图片链接,图片导入comfyUI就是工作流。https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png我们打开ComfyUI,把工作流或图片拖拽到ComfyUI里:

其他人在问
制作图片的AI工具,名字好像叫comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出并分享,报错时能清晰定位错误。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势在于: 1. 操作门槛高,需要清晰的逻辑。 2. 生态不如 webui 丰富,但有针对其开发的有趣插件。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,有人认为如果 contornet 让 AI 绘画从玩具变成工具,那 ComfyUI 就是制作工具的工具。同时,藏师傅介绍了用 ComfyUI 三步制作任意公司周边图片的流程,整个流程分为获取 Logo 图片的描述、根据描述和生成意图生成图片提示词、将图片和提示词输入 ComfyUI 工作生成。
2024-11-23
你好,什么事comfyui LLM party
ComfyUI LLM Party 相关内容如下: 作为 ComfyUI 插件的开发者,主要目的是讲解 LLM(大语言模型)与 ComfyUI 结合的基础、进阶和高阶用法,个人将 ComfyUI 中 LLM 应用粗略分为四大类:文本方面(提示词扩写、润色、对话)、图像视觉方面(图像提示词反推、OCR、LoRA 训练集图像打标)、LLM Agent(工具调用、长期/短期记忆、本地/API 大语言模型调用、封装 ComfyUI 工作流等)、其他独立于这些之外的 LLM 节点或功能。 对于 ComfyUI 和 ComfyUI LLM Party 的下载: 如果是 AI 绘图工作者,对 ComfyUI 不陌生。若未接触过,可在 GitHub 上拉取项目,或在 B 站下载整合包,如秋叶大佬的绘世整合包或者只剩一瓶辣椒酱的铁锅炖整合包。 ComfyUI LLM Party 是以 ComfyUI 作为前端的节点库,用于 LLM 智能体以及 LLM 工作流的无代码开发,功能类似于 coze、dify、flowise 等,与 ComfyUI 生态下的绝大部分节点相辅相成,有着无缝接入 SD 图像流的特色。可通过以下方法安装: 方法一:在中搜索 comfyui_LLM_party,一键安装,然后重启 comfyui。 方法二:导航到 ComfyUI 根文件夹中的 custom_nodes 子文件夹,使用克隆此存储库 git clone https://github.com/heshengtao/comfyui_LLM_party.git 。
2024-11-22
ComfyUI的Windows下载包
以下是关于 ComfyUI 的 Windows 下载包的相关信息: 下载地址:https://github.com/comfyanonymous/ComfyUI ,您可以在此下载安装包,也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip 。 安装方法: 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 目前安装 ComfyUI 有以下两种方法,您可以根据自己的需求选择: 本地安装: 命令行安装:普适性最强,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说可能有一定门槛。ComfyUI 的源码地址在 https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中,您也可以按照 Readme 文档进行操作。 安装包安装:安装比较简单,下载就能用。ComfyUI 的官方安装包下载地址是 https://github.com/comfyanonymous/ComfyUI/releases ,目前仅支持 Windows 系统,且显卡必须是 Nivida。下载最新的版本,解压就能使用。 云端安装:云端配置相对较高,生成图片的速度会更快,但是需要一定的费用。如果您想在云端安装,可以跳到。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 汉化安装方法:在网盘连接中下载汉化包,并解压。将文件夹拖入到 E:\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 目录下。启动 ComfyUI 界面,点击右侧的小齿轮。在弹出界面的底部就可以切换语言了,选择中文即可。点击下方的“切换语言”,就可以在中文和英文之间随意切换。需要 blender 插件和汉化包的朋友,可以关注公众号【白马与少年】,发送【ComfyUI】即可获取链接。
2024-11-22
ComfyUI 安装教程
以下是 ComfyUI 的安装教程: 1. 电脑硬件要求: 系统:Windows 7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址:https://www.nvidia.cn/geforce/drivers/ 2. 下载并安装所需要环境(安装过 WebUI 的同学请忽略本步骤): 依次下载并安装 python、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 Python 版本 3.10 以上,下载地址: VSCode 下载地址: Git 下载地址: 安装 Python 时选中“将 Python 添加到系统变量”。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network ,下载文件:cuda_12.2.0_536.25_windows.exe 3. 安装 ComfyUI: 地址:https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到你已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 7. 快捷键(未提及具体快捷键内容)
2024-11-17
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细信息: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:未提及。
2024-11-16
如何在Mac上运行comfyUI
在 Mac 上运行 ComfyUI 的步骤如下: 1. 电脑配置:MacBook Pro,M1 芯片,16G 内存,Sonoma 14.6.1 系统版本。 2. 部署 ComfyUI: 安装依赖:在终端中输入“pip3 install r requirements.txt”安装 ComfyUI 的依赖文件。终端提示需要特定版本的 numpy 时,输入“Y”卸载当前版本,然后输入“pip3 install numpy==1.26.4”安装指定版本。 启动 ComfyUI:在终端中输入“pwd”查看 ComfyUI 的文件路径,复制文件路径,替换启动命令中的相应部分,然后将命令“source cf/bin/activate && cd /Users/vina/Documents/ComfyUI && python main.py autolaunch listen dontupcastattention outputdirectory ~/Desktop”复制到终端。启动成功后,浏览器会自动跳转,但网页地址可能不对,直接在浏览器打开“http://localhost:8188/”即可使用。 3. 管理器和资源占用插件:官方的 ComfyUI 安装包不带管理器和资源占用视图,需要从 GitHub 下载。管理器插件下载地址:https://github.com/ltdrdata/ComfyUIManager 。资源占用视图插件装不装均可,下载地址:https://github.com/crystian/ComfyUICrystools 。 此外,还有一种搭建自己第一个 ComfyUI 的方法(熟手推荐 自定义创建): 1. 创建工作空间:进入工作空间,点击自定义创建,按照以下内容配置,点击立即创建。镜像选择 lanruicomfyui 镜像;网盘默认挂载;数据集默认挂载 sdbase;启动方式默认选择手动启动。待实例状态由启动中变为运行中后,稍等一会,点击进入 JupyterLab,选择 terminal 终端。 2. 启动 ComfyUI:进入终端后,先参考配置学术加速。运行如下启动命令后按回车键,等待 1 分钟左右。(每次启动都需要输入启动命令)如果想要长时间持续运行任务,请用 nonhup 启动:启动命令“nohup bash /home/user/start.sh > comfy.log 2>&1 &”;查看启动/出图进度命令“tail fn 500 comfy.log”;停止命令“pkill 9 f '27777'”。当页面显示“To see the GUI go to:http://0.0.0.0:27777”,说明已启动成功。 3. 访问 ComfyUI 界面:返回工作空间,点击实例右侧的「打开调试地址」到浏览器,就可以使用 ComfyUI 啦。 需要注意的是,在 Mac 上使用 ComfyUI 存在一些难点: 1. 生图慢,因为 Mac M 只有 CPU,没有 GPU。 2. 生图的大模型在 CPU 环境中不一定适配、好用。 3. 用 Mac 生图的人少,能一起讨论的人也少,解决方案也少,需要自己摸索。 4. 大神们在 Windows 系统里做的一键包,在 Mac 中不能用。 5. 大神们的工作流也要做适配 Mac 的修改,需要一点点代码阅读和修改的能力。
2024-11-15
有没有国内网络能打开的免费好用的美术类AI工具?
以下为您推荐国内网络能打开的免费好用的美术类 AI 工具: 1. 扣子 + ByteArtist 网址:https://www.coze.cn/home 优点:不需要翻墙,无收费,可以直接生成 注册:手机号、抖音号或飞书号 操作步骤:需要在 coze 的 bot 里面添加绘图插件 时间:5min 2. 无界 AI 网址:https://www.wujieai.cc/ 优点:国内网络即可稳定使用,有免费出图点数,支持中文关键词输入,无需额外下载风格模型,可直接取用 希望这些工具能满足您的需求。
2024-11-11
寻找可以对电脑桌面打开的PDF文档、网址进行总结的ai
以下是一些可以对电脑桌面打开的 PDF 文档、网址进行总结的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 此外,还有一些相关的工具和网站: 1. AI PDF(与免费帐户。它消除了重复上传文件的需要。PRO 版本可以搜索 1000 个 PDF 和 OCR 文档,为冗长的文档提供上级摘要。 2. TXYZ 网站:是一个帮助大家搜索、查询专业文献并可以进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-24
我刚打开飞书知识库,新手小白要怎么学习?我想对所有的Ai工具有着熟练的使用,先学习什么,再学习什么
对于新手学习 AI 并熟练使用相关工具,建议按以下步骤进行: 1. 掌握提示词技巧:提示词上手容易且很有用。 2. 实践和尝试: 理论学习后通过实践巩固知识,尝试使用各种产品制作作品。 参考飞书知识库中大家实践后的作品和文章分享,并积极分享自己的实践成果。 3. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的第一手体验。 4. 持续学习和跟进: 关注 AI 领域的新闻、博客、论坛和社交媒体,了解最新发展。 加入 AI 相关社群和组织,参加研讨会、工作坊和会议,与其他爱好者和专业人士交流。 如果希望继续精进,还可以学习以下内容: 1. Python 相关: 属性和方法:学习为类定义属性和方法,并通过对象调用。 继承和多态:了解类之间的继承关系及实现多态。 异常处理:理解异常,学习使用 try 和 except 语句处理错误。 文件操作:学习文件读写、文件与路径操作。 2. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及关系。 历史发展:回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等基本概念。 概率论:掌握基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解线性回归、决策树、支持向量机(SVM)等常用算法。 无监督学习:熟悉聚类、降维等算法。 另外,学习 AI 还可以: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 术语和基础概念,包括主要分支及它们之间的联系。 浏览入门文章,了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入钻研。 学习 AI 是一个长期过程,需要耐心和持续努力,不要害怕犯错,每个挑战都是成长机会,随着时间推移,您将逐渐建立起自己的 AI 知识体系并取得成就。
2024-08-21