Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型时间序列的图

Answer

以下是为您整理的关于大模型时间序列相关的图的信息:

  • 2023 年 7 月 10 日,在“一图胜千言”中更新了几张图,包括一张 LLM 很重要的图,其背后是一篇必读论文《Language Models are Few-Shot Learners》,还有大型语言模型(大于 10B)的时间轴,这背后也是一篇论文,85 页盘点 LLM 发展史,附最详细 prompt 技巧。此外,还有 datacamp 出品的“生成式人工智能工具全景图”和“盘点数据和人工智能相关工作所需的主要服务”。
  • 中文大模型基准测评 2023 年度报告中,国内大模型关键进展大致分为三个阶段,即准备期(ChatGPT 发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。
  • Sora:大型视觉模型的综述中,基础模型用于低分辨率视频生成,然后通过级联扩散模型进行细化以提高分辨率。基础视频和超分辨率模型采用 3D U-Net 架构,以时空可分离的方式使用。该架构将时间注意力和卷积层与空间对应物结合起来,以有效捕获帧间依赖性。还包括通过插入学习将帧对齐成时间一致序列的时间层,将预训练的 LDM 转变为视频生成器等内容。
Content generated by AI large model, please carefully verify (powered by aily)

References

2023 年历史更新(归档)

[title]2023年历史更新(归档)[heading3]7月10日一图胜千言中更新了几张图一张LLM很重要的一张图,背后是一篇必读论文[《Language Models are Few-Shot Learners》](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=rec0Ig6Qzf&table=tblyh76bHrCi4PXq&view=vewUunvDn1)[大型语言模型(大于10B)的时间轴](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=recJR4ndlj&table=tblyh76bHrCi4PXq&view=vewUunvDn1)这背后也是一篇论文,85页盘点LLM发展史,附最详细prompt技巧datacamp出品的[生成式人工智能工具全景图](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=rec91zO1YX&table=tblyh76bHrCi4PXq&view=vewUunvDn1)和[盘点数据和人工智能相关工作所需的主要服务](https://ywh1bkansf.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?field=fldzHOwXXK&record=recf9ckOMT&table=tblyh76bHrCi4PXq&view=vewUunvDn1)

2023年度中文大模型基准测评报告.pdf

5(关键进展)时间准备期成长期爆发期◼自2022年11月30日ChatGPT发布以来,AI大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。国内学术和产业界在过去一年也有了实质性的突破。大致可以分为三个阶段,即准备期(ChatGPT发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。故事的起点:ChatGPT发布国内迅速形成大模型共识

Sora:大型视觉模型的背景、技术、局限性和机遇综述 【官方论文】

[title]Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】[heading1]3技术[heading2]3.3建模基础模型用于低分辨率视频生成,然后通过级联扩散模型进行细化以提高分辨率。基础视频和超分辨率模型采用3D U-Net架构,以时空可分离的方式使用。该架构将时间注意力和卷积层与空间对应物结合起来,以有效捕获帧间依赖性。它采用v-预测参数化以确保数值稳定性,并使用条件增强来促进模型间的并行训练。该过程涉及对图像和视频的联合训练,将每个图像视为一个帧以利用更大的数据集,并使用无分类器引导[57]来增强提示的忠实度。应用渐进式蒸馏[58]来简化采样过程,显著减少计算负载同时保持感知质量。结合这些方法和技术,Imagen Video不仅能生成高保真度的视频,还能展现出卓越的可控性,如其生成多样化视频、文字动画和各种艺术风格内容的能力所示。14(a)额外的时间层。通过插入学习将帧对齐成时间一致序列的时间层,将预训练的LDM转变为视频生成器。在优化过程中,图像骨干θ保持固定,只有时间层li的参数ϕ接受训练。14(b)视频LDM堆栈。视频LDM首先生成稀疏关键帧,然后使用相同的潜在扩散模型进行两次时间插值以实现高帧率。最后,将潜在视频解码到像素空间,并可选地应用视频上采样器扩散模型。图14:视频LDM的整体框架。来源:视频LDM[36]。

Others are asking
10碱基长度序列如何进行比对
很抱歉,目前知识库中没有关于 10 碱基长度序列如何进行比对的相关内容。但一般来说,进行碱基序列比对可以使用专门的生物信息学软件和算法,常见的方法包括基于动态规划的算法(如 NeedlemanWunsch 算法和 SmithWaterman 算法)、基于哈希表的快速比对方法等。同时,还需要考虑碱基的相似性计分规则、空位罚分等因素。如果您需要更详细准确的信息,建议查阅专业的生物信息学教材或咨询相关领域的专家。
2024-08-27
到今天,大语言模型还会产生“幻觉”吗
截至今天,大语言模型仍会产生“幻觉”。 大语言模型偶尔会根据输入输出一些荒谬或不符合事实的内容,目前各家大语言模型在该问题上的表现都不尽如人意。产生“幻觉”的原因包括: 1. 样本存在错误(Imitative Falsehoods):如果大语言模型学习的“教材”中有错误,它也容易给出错误回答。缓解该问题的一个办法是上采样(Up Sampling)。 2. 信息过时(Outdated Factual Knowledge):以前正确的信息现在可能过时了。 此外,大语言模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。如果在其训练过程中,模型被暴露于大量知识之中,它并没有完美地记忆所见到的信息,并不十分清楚自己的知识边界,可能会尝试回答有关深奥话题的问题,并虚构听起来有道理但实际不正确的内容。 在构建应用程序时,可以使用一些技术来避免这种情况,例如要求模型先从文本中找到相关引文,然后使用引文回答问题,并将答案追溯回源文件,这通常有助于减少“幻觉”的发生。
2025-01-22
本地部署大模型
以下是关于本地部署大模型的详细步骤: 1. 部署大语言模型: 下载并安装 Ollama: 根据电脑系统,从 https://ollama.com/download 下载 Ollama。 下载完成后,双击打开,点击“Install”。 安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型(若设备充足可下载更大模型): Windows 电脑:点击 win+R,输入 cmd 点击回车。 Mac 电脑:按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,等待自动下载完成。 2. ComfyUI ollama 本地大模型部署: 先下载 ollama 安装,安装完成后可在电脑桌面右下角或隐藏图标中找到。 下载对应的模型,选择模型并复制对应的命令。 打开命令行界面,输入对应的模型获取命令,等待下载完成。 模型下载后会保存到 D:\\ollama\\blobs 。 进行 docker 安装,安装会下载一些文件,安装后更改目录,不要放在 C 盘。 进行 Open webui 安装,输入相关命令,安装成功后回到 docker,点击会自动打开网页,第一次使用需注册账号,选择下载好的模型即可开始使用。 3. 错误解决: 端口占用问题,在 Windows 上可能出现,运行相关两条命令可解决。 4. 相关链接: comfyuiollama:https://github.com/stavsap/comfyuiollama?tab=readmeovfile Ollama:https://ollama.com/ docker:https://www.docker.com/ Open webui:https://openwebui.com/ 此外,还有一篇思路来源于视频号博主黄益贺的相关内容,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。文中提到读完本文可以学习到如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 软件搭建完全本地化的数据库等内容。虽然大多数人不需要自己部署大模型,但期望通过本文的指导能够折腾一遍,从而做到知其然且知其所以然。
2025-01-22
大模型评分
大模型评分通常会根据不同的赛事或评估体系有所差异。 在金融行业的大模型挑战赛中,评测任务形式为给定一组参考文档和问题,要求模型按指定格式生成答案。赛事主办方会根据选手提供的回答与参考答案对比,并根据关键字段命中情况进行评分。评分公式涉及关键词命中总次数、关键词总数、小题数和得分等参数。例如在示例问题中,根据每个小题的回答正确情况计算得分,完全正确得满分 1 分,部分正确则根据命中比例计算得分。 在其他的大模型评估方面: FlagEval(天秤)大模型评测体系及开放平台,旨在建立科学、公正、开放的评测基准、方法、工具集,创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。地址:https://github.com/FlagOpen/FlagEval 。 CEval 构造了一个覆盖多个学科的中文知识和推理型测试集,并给出了当前主流中文 LLM 的评测结果。地址:https://github.com/SJTULIT/ceval 。 SuperCLUElyb 是中文通用大模型匿名对战评价基准,以众包方式提供匿名、随机的对战,并发布了初步结果和基于 Elo 评级系统的排行榜。地址:https://github.com/CLUEbenchmark/SuperCLUElyb 。 斯坦福发布的大模型排行榜 AlpacaEval 支持两种模式的模型评估方式:alpaca_eval 和 alpaca_eval evaluate_from_model 。评测过程分为选择评估集并计算输出、计算 golden 输出、通过指定的自动标注器计算胜率等步骤。相对于人工标注,全自动化的 AlpacaEval 具有较低的经济成本和时间成本。
2025-01-22
有哪些能够本地部署的AI视频生成模型
以下是一些能够本地部署的 AI 视频生成模型: 1. Stable Video Diffusion 模型: 准备工作:手动下载相关内容,分别放到指定路径。 模型选择:点击下拉箭头选择不同模型版本,勾选 load Model。 视频创作:支持图生视频,图片来源可选择 Midjourney、Stable Diffusion 等生成的图片,上传到 SVD 进行视频生成,可调节左侧参数控制效果。 保存路径:生成的视频在 outputs 下。 2. LTXVideo 模型: 基于 2B 参数 DiT,能够以 768x512 分辨率生成 24 FPS 的视频,速度比观看还快。 专为 RTX 4090 等 GPU 优化,使用 bfloat16 精度,实现高效内存使用且不影响质量。 ComfyUI 现已支持该模型,用户只需下载模型文件并获取工作流即可在本地运行。 3. Sora 模型: 功能:文生视频、图生视频、视频生视频,支持多种视频定制选项,如分辨率、视频长度和视频风格;具有故事板功能,允许用户通过时间线指导视频中的多个动作;提供混音和编辑功能,包括视频混音、延伸和剪辑、创建循环视频等;还有混合功能,可将两个视频场景合并成一个新的场景。 费用和订阅套餐:对于拥有 OpenAI Plus 或 Pro 账户的用户,使用包含在现有订阅中。OpenAI Plus 订阅每月 50 次视频生成次数,OpenAI Pro 订阅无限次慢速队列生成,500 次正常速度的视频生成次数。用户可根据需要选择更高分辨率的视频生成,但可能会减少每月使用次数。发布初期,某些地区(如欧洲和英国)可能会有延迟。
2025-01-21
国内文生图模型
以下是关于国内文生图模型的相关信息: Recraft 模型:用 8 个月自研模型,包含处理数据的模型、标注工作、训练 OCR 模型、新构建的数据集等。Recraft 生成带有长文本图像的流程图解,但存在生成默认是外国面孔而非亚洲面孔且生成的亚洲人不太自然的情况,可能与数据集有关。只有少数公司真正从头训练模型,创建自己的模型困难且成本高,需要超强团队和资金。 模型能力方面: 文本编码器的能力是文生图模型语义理解能力的关键。一开始大部分模型使用 CLIP 作为文本编码器,但存在一些问题。新的模型纷纷优化文本编码器能力,如引入更大更强的 T5XXL 或结合多个特征,但开源模型在中文生图方面能力一般。 腾讯开源的 HunyuanDiT 是较可用的中文生图模型,但仍存在优化空间。 Kolors 是最近开源的给力文生图模型,改进全面,技术实力强。
2025-01-21
吴恩达大模型教程
以下是一些与吴恩达大模型相关的教程和资源: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 提示工程指南: 地址: 简介:基于对大语言模型的兴趣编写的全新提示工程指南,介绍了相关论文研究等。 LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:由两位 LLM 创业者维护的 Langchain 中文文档。 LLM 九层妖塔: 地址: 简介:包含 ChatGLM 等实战与经验。 目录:吴恩达讲 Prompt https://github.com/zard1152/deepLearningAI/wiki Coze 复刻:吴恩达开源的 AI 翻译项目 复刻步骤:包括配置反思优化的提示词、结合反思优化建议再次翻译、选择输出方式等。 大语言模型分为基础 LLM 和指令微调 LLM 两类。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会使用人类反馈强化学习(RLHF)技术优化。提示的关键原则包括尽可能保证下达的指令“清晰、没有歧义”,给大模型思考的时间以及足够的时间去完成任务。
2025-01-21
sora现在能生成多长时间视频
Sora 是由 OpenAI 开发的文生视频模型,能够根据文字指令创造出逼真且充满想象力的场景,并生成长达 1 分钟的高质量视频,且具有一镜到底的特点,视频中的人物和背景能保持惊人的一致性和稳定性。与之前的视频生成模型相比,Sora 在生成时长和视频质量上有显著进步。同时,还有其他一些文字生成视频的 AI 产品,如 Pika 擅长动画制作且支持视频编辑,SVD 是基于 Stable Diffusion 的插件,Runway 是老牌的收费 AI 视频生成工具且提供实时涂抹修改视频功能,Kaiber 是视频转视频 AI,能将原视频转换成各种风格的视频。更多相关网站可查看:https://www.waytoagi.com/category/38 。
2025-01-15
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
需要做一个AI知识分享专题会,大概15分钟的时间,请帮忙列出大纲和主题内容
以下是为您生成的 15 分钟 AI 知识分享专题会大纲和主题内容: 大纲: 1. 开场介绍(2 分钟) 2. 主题分享(8 分钟) 3. 交流互动(3 分钟) 4. 总结结束(2 分钟) 主题内容: 开场介绍(2 分钟): 简要介绍本次专题会的目的和流程。 主题分享(8 分钟): 1. 介绍 AI 的基本概念和发展现状。 2. 分享几个 AI 在不同领域的应用案例,如医疗、教育、金融等。 3. 探讨 AI 未来的发展趋势和可能带来的影响。 交流互动(3 分钟): 鼓励参会者提出问题和分享自己的看法,进行简单的交流。 总结结束(2 分钟): 总结本次专题会的重点内容,感谢参会者的参与。
2024-12-30
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
好长时间没接触AI了,大概有三四个月没学习了,你能快速指引我吗
以下是为您提供的快速指引,帮助您重新学习 AI: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 希望以上指引对您有所帮助,祝您在 AI 学习中取得进步!
2024-12-19
我想学习python,但我从没有学习过任何编程语言。如果按专业学习类的书去自学,我觉得很无聊,而且也不好理解。最主要的是学习时间太长。你可以帮我制定一个,利用AI快速学习python的方法吗?
以下是为您制定的利用 AI 快速学习 Python 的方法: 首先,您需要了解 Python 基础,包括基本语法(如变量命名、缩进等规则)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句 if、循环语句 for 和 while 控制程序执行流程)、函数(定义和调用函数、理解参数和返回值、掌握作用域和命名空间)、模块和包(学会导入标准库或第三方库、安装和使用包扩展功能)、面向对象编程(了解类和对象的定义与实例化、属性和方法的定义与调用、继承和多态)、异常处理(理解异常的概念和工作方式、使用 try 和 except 语句处理错误)以及文件操作(学会文件读写、处理文件与路径)。 您可以参考以下课程内容进行学习: 1. “和 Cursor AI 一起学 Python 编程”: 第二节:Python 基础语法与文本处理,45 分钟。教学内容包括 Python 基础语法、数据类型、控制结构、文本处理基础、字符串操作方法、文件读写操作。实践实验包括中文文本的基本处理,如统计字符数、词语数、句子数,讨论中文编码问题及解决方法。教学目标是掌握 Python 基本语法和结构,能够进行简单文本数据处理。 第三节:利用 Python 进行自然语言处理(NLP),45 分钟。教学内容包括自然语言处理的概念和重要性、Python 中的 NLP 库、分词原理举例、介绍结巴分词等工具、用 Jieba 进行课文分词。实践实验包括中文分词与词频分析,统计词频并找出高频词汇,讨论词频分析在语言教学中的应用。教学目标是掌握使用 Python 进行基本的 NLP 操作,理解 NLP 技术在语言研究和教学中的应用。 在学习过程中,您可以借助 AI 工具辅助理解和解决问题,例如通过智能问答获取对概念的解释,或者让 AI 为您生成示例代码帮助理解。祝您学习顺利!
2024-12-16