直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我是一个大学生,LLM帮我能做什么

回答

对于大学生来说,LLM 可以提供以下帮助:

  1. 像开卷考试一样,LLM 可以帮助您获取参考资料和相关信息,例如在进行知识学习和研究时,为您提供所需的事实性知识。
  2. 可以用于检测对抗提示并将其过滤掉,避免不良输出。
  3. 能够为您提供写作方面的帮助,比如写论文,但需要注意这并非是道德的使用方式。同时,了解这种可能性以及其在学生中的使用情况很重要。对于接收方来说,也需要为组织可能接收到的 AI 生成内容做好准备。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:RAG 是什么?

RAG对大语言模型(Large Language Model,LLM)的作用,就像开卷考试对学生一样。在开卷考试中,学生可以带着参考资料进场,比如教科书或笔记,用来查找解答问题所需的相关信息。开卷考试的核心在于考察学生的推理能力,而非对具体信息的记忆能力。同样地,在RAG中,事实性知识与LLM的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,具体分为两种:参数化知识(Parametric knowledge):模型在训练过程中学习得到的,隐式地储存在神经网络的权重中。非参数化知识(Non-parametric knowledge):存储在外部知识源,例如向量数据库中。

对抗性提示

我们知道LLM可以是复杂、通用和强大的系统,可以在广泛的任务上表现出色。LLM也可以用于或微调以执行特定任务,例如知识生成([Liu等人,2022(opens in a new tab)](https://arxiv.org/pdf/2110.08387.pdf))和自我验证([Weng等人,2022(opens in a new tab)](https://arxiv.org/abs/2212.09561v1))。同样,LLM可以用于检测对抗提示并将其过滤掉。[Armstrong和Gorman(2022)(opens in a new tab)](https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking)提出了一个有趣的解决方案。以下是它在实践中的样子。第一步是定义提示评估器。在文章中,作者提出了一个chatgpt-prompt-evaluator,看起来像下面这样:Prompt:这是一个有趣的解决方案,因为它涉及定义一个特定的代理,负责标记对抗提示,以避免LM响应不良输出。我们已经为您准备了[此笔记本](https://www.promptingguide.ai/zh/notebooks/pe-chatgpt-adversarial.ipynb),供您尝试此策略。

小七姐:精读翻译《提示词设计和工程:入门与高级方法》

继续上述例子,如果你可以向LLM寻求写作建议,那么也可以直接要求它¹帮你写论文。让我们看看,当你提供一些关于我的背景信息,并给出一些指令时会发生什么:“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我6岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最“异国情调”的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是13岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”请参见图2的输出结果。¹请注意,我并不是在提倡这是这些工具的道德使用方式,但了解这种可能性的存在以及它已经被全世界的学生使用是很重要的。这超出了这个介绍性指南的范围,去讨论LLM或整个生成式AI引入的所有可能的伦理、法律或道德问题,但我认为至少在介绍性示例中提出这一点是很重要的。你可以用生成模型做某件事,并不意味着这是正确的事情!另一方面,如果你是接收方,你最好为你的组织准备好迎接各种AI生成的内容。幸运的是,对于像这个例子中概述的情况,已经有努力正在进行以检测AI生成的内容。

其他人在问
有哪些工具直接可以调用国外的多个LLM
以下是一些关于能够调用国外多个 LLM 的相关信息: 开源项目作者 ailm 提出一种仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力,使用多个不具备该功能的 LLM 进行实验,成功率达 100%,工作基于 comfyui 开发,适合无代码基础的人员复现和修改。 在高级提示词工程领域,工具、连接器和技能的整合能显著增强 LLM 的能力。工具是指 LLM 可利用的外部功能或服务,扩展任务范围;连接器是 LLM 与外部工具或服务的接口,管理数据交换和通信;技能是 LLM 可执行的专门功能。 目前开源模型与专有产品存在差距但在缩小,如 Meta 的 LLaMa 模型引发一系列变体。当开源 LLM 达到一定准确度水平时,预计会有大量实验等。开发人员对 LLM 操作工具的研究尚不深入,一些工具如缓存(基于 Redis)、Weights & Biases、MLflow、PromptLayer、Helicone 等得到较广泛使用,还有新工具用于验证 LLM 输出或检测攻击。多数操作工具鼓励使用自身的 Python 客户端进行 LLM 调用。
2024-11-12
集成LLM的工具
以下是关于集成 LLM 的工具的相关内容: 一、“手臂和腿部”:赋予模型使用工具的能力 1. 从知识挖掘转向行动导向,增加模型使用工具的能力,有望在消费者和企业领域实现一系列用例。 对于消费者,LLMs 可能给出菜谱建议并订购食材,或推荐早午餐地点并预订餐桌。 在企业领域,创始人可接入 LLMs 使应用程序更易用,如在 Salesforce 等应用中,用户能用自然语言更新,模型自动更改,减少维护 CRM 所需时间。 2. LLM 虽对常见系统有复杂理解能力,但无法执行提取的信息。不过,公司在不断改善其使用工具的能力。 老牌公司如必应、谷歌和初创公司如 Perplexity、You.com 推出搜索 API。 AI21 Labs 推出 JurassicX,解决独立 LLMs 缺陷。 OpenAI 推出 ChatGPT 插件测试版,允许与多种工具交互,在 GPT3.5 和 GPT4 中引入函数调用,允许开发者将 GPT 能力与外部工具链接。 二、无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 2. 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。 TOOL_EAXMPLE 提示 LLM 如何理解和使用工具,编写时用无关紧要工具作示例避免混淆。 tools_instructions 是通用工具字典转换成 LLM 可读的工具列表,可动态调整。 REUTRN_FORMAT 定义调用 API 格式。 3. 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。通过以上提示词工程,可让无 tool calling 能力的 LLM 获得稳定的该能力。
2024-11-12
摘要总结作为 llm 训练的下游任务,一般的训练流程是怎样的
作为 LLM 训练的下游任务,一般的训练流程如下: 1. 首先从大量文本数据中训练出一个基础 LLM。 2. 随后使用指令和良好尝试的输入和输出来对基础 LLM 进行微调和优化。 3. 接着通常使用称为“人类反馈强化学习”的技术进行进一步细化,以使系统更能够有帮助且能够遵循指令。 在训练过程中,会涉及到一些相关的理论探讨和评价指标: 理论探讨方面,如在推理阶段对 InContext Learning 能力的运行分析,将其视为隐式微调,通过前向计算生成元梯度并通过注意力机制执行梯度下降,且实验表明 LLM 中的某些注意力头能执行与任务相关的操作。 评价指标方面,entropylike 指标(如 crossentropy 指标)常用于表征模型的收敛情况和测试集的简单评估(如 Perplexity 指标),但对于复杂的下游应用,还需更多指标,如正确性(Accuracy)、信息检索任务中的 NDCG@K 指标、摘要任务中的 ROUGE 指标、文本生成任务中的 BitsperByte 指标、不确定性中的 ECE 指标、鲁棒性(包括 invariance 和 equivariance)、公平性、偏见程度和有毒性等。
2024-11-07
如何学会ollma dify
以下是关于学习 Ollama 的详细步骤: 1. 了解 Ollama :Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。它是一个轻量级、可扩展的框架,提供了简单的 API 来创建、运行和管理模型,还有预构建模型库,降低了使用门槛,适合初学者或非技术人员使用,特别是希望在本地与大型语言模型交互的用户。 2. 安装 Ollama : 官方下载地址:https://ollama.com/download 。 安装完成后,可通过访问 http://127.0.0.1:11434/ 判断是否安装成功。 3. 启动 Ollama : 从 ollama 的 github 仓库找到对应版本并下载。 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。 将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/ 以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 4. 常见报错及解决方案:如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 5. 使用 Ollama 运行本地大模型: 安装完成 ollama 后,在命令行中运行相应命令。 可通过查看并选择要运行的本地大模型,如 llama2 大模型。考虑机器配置及不同版本的内存要求选择合适的模型参数。运行时,ollama 会自动下载大模型到本地。
2024-11-06
LLM和COT分别是什么
LLM 即大型语言模型(Large Language Model),是一种基于深度学习的自然语言处理模型,具有强大的语言理解和生成能力。例如 FlanT5、ChatGLM、UL2、Qwen、Chinchilla、OPT、PaLM、LLaMA、LLaMA2、Vicuna 等都是常见的 LLM 模型。 COT 即思维链(ChainofThought),它能引导 LLM 逐步推理,增强其逻辑推理能力,对于需要逻辑解决方案的任务非常有效,但在创造性问题解决中存在局限性。在一些研究中,如多模态大模型中,LLM 作为核心智能体可以继承包括 COT 在内的一些显著属性。同时,ReAct 框架中也提到了将 ReAct 和 COT 结合使用的方法。
2024-10-28
LLM原理
LLM(大语言模型)的工作原理如下: 大模型在回复时是一个字一个字地推理生成内容,就像输入法的输入联想逻辑,会根据输入的字推测下一个字。但仅算字的概率存在问题,且全量数据计算算力吃不消。 为解决这些问题,出现了词向量机制和 transformer 模型中的 attention 自注意力机制。 以“我今天吃了狮子头和蔬菜”这句话为例,在 transformer 中,attention 层会对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,层与层之间由模型自主学习哪些信息补充、保留和传递,最终把海量数据以关系网形式“消化”并保留重要相关性。 这些层就像人阅读文章时的连贯性注意力过程,记忆的不是点状知识而是网状经验。 大模型以词向量和 transformer 的模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 就像人脑阅读学习,记忆不是逐字逐句,而是按相关性、重要程度结合历史经验,比如记忆“红色”时会带有很多“feature”信息。 常见缩写和专业词汇解释: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,其质量会影响回答质量。 Token:大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,1Token 约等于 1 2 个汉字,收费和输入输出长度限制以 token 为单位。 上下文:英文为 context,指对话聊天内容前、后的信息,其长度和窗口会影响回答质量。
2024-10-24
大学生用ai听录数学课
以下是为您整理的关于大学生用 AI 听录数学课的相关信息: 在教育领域,AI 为学习带来了新的可能性和变革。例如,教育科技长期以来在有效性和规模之间权衡,而有了 AI 后,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,能理解独特需求并回答问题或测试技能。像 Photomath 和 Mathly 这样的应用能指导学生解决数学问题。 但在使用 AI 辅助学习时也需注意一些问题。比如在数学学习中,如果让学生使用 AI 检查过程,应确保他们先学会数学流程。使用 AI 时,不能让机器代替我们学习,应根据学习任务来决定是否使用以及如何使用 AI ,比如在编程课上可能先让学生手动编码再使用 AI 生成的代码节省时间,而在健康课上开发相关应用时可能对使用生成式 AI 写代码的限制较宽松。 总之,AI 能为数学学习提供帮助,但要合理、有针对性地使用。
2024-11-13
生成一个讲座教案。关于AI助力大学生学习的。
以下是一份关于 AI 助力大学生学习的讲座教案: 一、引言 教育科技长期以来在有效性和规模之间存在权衡,但 AI 的出现改变了这一状况。现在可以大规模部署个性化的学习计划,为大学生提供“口袋里的老师”。 二、AI 在学科学习中的应用 1. 语言学习 像 Speak、Quazel 和 Lingostar 这样的应用能够提供实时交流,并对发音或措辞给予反馈。 2. 数学学习 Photomath 和 Mathly 等应用可以指导学生解决数学问题。 3. 历史学习 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授历史。 三、AI 在作业中的辅助 1. 写作方面 Grammarly、Orchard 和 Lex 等工具帮助学生克服写作难题,提升写作水平。 2. 其他内容形式 Tome 和 Beautiful.ai 协助创建演示文稿。 四、不同时代教育与技术的关系 1. 口传时代 传授生存技能,传承部落文化,通过口诀、歌谣、神话故事等方式,在生活场景和部落仪式中,以口耳相传、身体力行示范等方法进行教学。 2. 手抄时代 掌握典籍知识,培养识字写字能力,学习经学典籍、礼仪、历史等,在私塾、官学、书院中,通过手抄本,采用背诵领会、注疏评点等方式教学。 3. 印刷时代 进行启蒙教育和专业教育,为科举考试准备,学习四书五经、史地文学等,在学校、课堂、图书馆中,利用印刷书籍,通过讲授说理、考试评价等方式教学。 4. 电子媒体时代 开展基础教育、职业教育、成人教育,学习多学科知识和实用技能,在课堂、演播室、函授、远程教育中,使用广播电视教材、函授讲义等,通过程序教学、自学辅导等方式教学。 5. 数字媒体时代 借助互联网等数字媒体,实现更个性化、多样化的学习。 五、AI 对教育的影响与思考 1. 优势 提供个性化学习计划,满足每个学生的独特需求。 节省时间,提高学习效率。 2. 挑战与思考 如何防止 AI 取代人类思考。 如何确保学生在使用 AI 辅助学习时,真正掌握知识和技能,而不是依赖工具。 六、总结与展望 AI 为大学生学习带来了诸多机遇,但也需要合理利用,以实现更好的教育效果。 以上教案仅供参考,您可以根据实际需求进行调整和完善。
2024-10-29
我是一个大学生,大语言模型帮我能做什么
大语言模型对大学生有以下帮助: 1. 模拟故事情景代入角色:通过心智理论推理出每个角色的知识和信念,得出可能的回答,有助于小说家写出更丰富的人物心理和精彩对话,设计更灵活逼真的情节细节。 2. 理解模型中的 Encoder:Encoder 是模型的编码器部分,负责对输入的文本序列进行编码,获取其对应的语义表示。具有词嵌入、位置编码、注意力机制、层叠编码、上下文建模等关键作用,是大型语言模型的核心部件,对于提取和建模输入序列的语义信息至关重要。 3. 转换类应用:擅长将输入转换为不同格式,如语言翻译、拼写和语法矫正、格式转换等,使转换过程更简单高效,提供更好的文本相关应用体验。例如可以将英文文本翻译成西班牙语,识别文本所属语言等。
2024-10-11
大学生怎么利用AI做PPT
大学生利用 AI 做 PPT 可以参考以下方法和工具: 1. 可以像卓 sir 那样,使用 GPT4、WPS AI 和 chatPPT 这三个工具。先花费时间探索写 prompt,然后借助这些工具完成 PPT 的大纲内容、排版、动画等。PPT 完成后,还可以添加企业背景图片进行完善。想查看具体 PPT 示例可移步飞书:https://fr3qe44cid.feishu.cn/docx/DW44djbRioSL4lxURmlcn5cEnte?from=from_copylink (也可以点击最后的阅读原文)。 2. 还可以尝试使用 Claude + Gamma.app 这两个工具,能够快速寻找符合条件的论文、提取精炼论文中某部分信息,并找到适合自己的 PPT 制作工具及学会使用。 3. 讯飞智文也是一个选择,它是由科大讯飞推出的 AI 辅助文档编辑工具,利用了科大讯飞在语音识别和自然语言处理领域的技术优势,可能提供智能文本生成、语音输入、文档格式化等功能。网址为:https://zhiwen.xfyun.cn/ 。 目前市面上大多数 AI 生成 PPT 通常按照以下思路来完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐阅读以下两篇市场分析文章: 1. 《》 2. 《》
2024-09-15
推荐一些最适合大学生做presentation的人工智能app
以下是一些适合大学生做 presentation 的人工智能 app: 1. Grammarly、Orchard(https://orchard.ink/)和 Lex(https://lex.page/~):帮助学生克服写作难题,提升写作水平。 2. Tome(https://beta.tome.app/)和 Beautiful.ai(https://www.beautiful.ai/):协助创建演示文稿。 3. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 4. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单的文本描述生成专业的 PPT 设计,网址:https://www.xdesign.com/ppt/ 5. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 6. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐您阅读以下两篇市场分析文章: 1. 《》 2. 《》
2024-09-08
如果是大学生应用AI进行创业呢
大学生应用 AI 进行创业,常见的方向包括护肤、健身、穿搭和考编考证等场景。 在护肤美妆、流行穿搭、养生健身方面,这些是社交媒体上的热门话题,大学生作为主流用户群体,乐于分享和交流相关内容,带动了对相关 AI 应用的关注和使用。这些领域与大学生日常生活和个人形象管理直接相关,AI 应用能提供高质量即时反馈与有效互动,且成本低于真人咨询和服务。比如健身 AI 应用能实时追踪锻炼进度并提供针对性建议,穿搭 AI 应用能展示不同搭配效果。 在考编考证方面,这类 AI 应用与大学生职业规划紧密相关。在就业竞争激烈的背景下,能帮助他们低成本、有针对性地准备考试和面试,提高就业机会。
2024-08-22
我现在是一个AI小白,我想学习AI相关知识,我要怎么进阶学习?
对于 AI 小白的进阶学习,您可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作自己的作品。 分享实践后的经验和成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获取实际应用中的体验,激发对 AI 潜力的认识。 同时,您还需要掌握以下基础知识: AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-11-14
如何写好一个Prompt?
写好一个 Prompt 可以参考以下要点: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在 Prompt 中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整 Prompt,可能需多次迭代。 优化和润色 Prompt 可尝试以下方法: 1. 明确具体描述:使用更具体、细节的词语和短语,而非笼统词汇。 2. 添加视觉参考:插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序,找到准确表达需求的方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为子 Prompt,逐步引导生成。 7. 参考优秀案例:研究有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,根据输出效果反馈持续完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2024-11-13
请你帮我写一段提示词,内容是:给AI 工具赋予一个身份,精通5why分析方法。
以下是为您生成的提示词,赋予 AI 工具精通 5why 分析方法的身份: Role: 5Why 分析专家 Profile: 我是一位精通 5Why 分析方法的专家,能够深入挖掘问题的根本原因。 Goals: 运用 5Why 分析方法,为您准确剖析问题,找出深层次的根源。 Constrains: 严格遵循 5Why 分析的逻辑和步骤,不随意跳跃或省略。 对于复杂问题,保持耐心和专注,确保分析的全面性和准确性。 Skills: 熟练掌握 5Why 分析的技巧和方法。 具备敏锐的洞察力,能够从表象中发现关键线索。 善于引导您一同参与分析过程,帮助您理解问题的本质。 Workflows: 首先,清晰了解问题的表象和您提供的相关信息。 然后,按照 5Why 的原则,逐步深入提问,直至找到根本原因。 最后,以清晰、简洁的方式向您呈现分析结果和解决方案。
2024-11-13
推荐一个ai桌面
以下为您推荐一些主流的 AI 笔记本电脑: 微软(Microsoft)第 11 代 Surface Pro 微星(MSI)Creator/Workstation 系列 技嘉(GIGABYTE)Aero/Aorus 系列 戴尔(Dell)Precision 移动工作站 惠普(HP)ZBook 移动工作站 联想(Lenovo)ThinkPad P 系列 这些笔记本通常具备以下特点: 配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘。 采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU。 配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。 提供大容量内存(32GB 以上)和高速 NVMe SSD 存储选配。 预装 NVIDIA CUDA、cuDNN 等深度学习框架及各种 AI 开发工具,提供开箱即用的 AI 开发环境。 不过,这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。您可以根据自身的 AI 应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。
2024-11-11
给我一个办公使用的AI工具列表
以下是一些适用于办公的 AI 工具: 1. 豆果美食 APP:是一个 AI 菜谱生成平台,运用自然语言处理和数据分析技术,能根据用户口味和现有食材生成个性化菜谱,市场规模达数亿美元。 2. 沪江开心词场:作为 AI 语言学习助手,采用自然语言处理和机器学习技术,辅助用户学习语言并提供个性化学习方案,市场规模达数十亿美元。 3. 爱奇艺智能推荐:这是一个 AI 电影推荐系统,通过数据分析和机器学习技术,根据用户喜好推荐电影,市场规模达数亿美元。 4. WPS Office:作为 AI 办公自动化工具,借助自然语言处理和机器学习技术,提高办公效率,实现自动化办公流程,市场规模达数十亿美元。 此外,在软件架构设计方面,以下工具可用于绘制逻辑视图、功能视图、部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,用户可通过拖放界面轻松操作。 2. Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 6. draw.io(diagrams.net):免费在线图表软件,支持多种类型图表创建。 7. PlantUML:文本到 UML 转换工具,可自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供架构图创建功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持多种视图创建。
2024-11-11
请推荐一个适合新手用的制作PPT的AI
以下为适合新手使用的制作 PPT 的 AI 推荐: 国内:爱设计 PPT 是一款值得推荐的产品。其背后拥有强大的团队,技术过硬且对市场需求有敏锐洞察力。成功把握住了 AI 与 PPT 结合的市场机遇,已在国内 AI 生成 PPT 产品中确立领先地位,能大大提高制作效率并保证高质量输出。 此外,还有以下几款受欢迎的 AI PPT 工具:MindShow、闪击、Process ON、WPS AI 。每款工具都有独特优势,能助您快速高效完成 PPT 设计。
2024-11-11