Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

扩散模型

Answer

在 AI 图像生成中,“diffusion”(扩散)通常指的是一类生成模型,称为扩散模型(Diffusion Models)。

扩散模型的工作原理如下:

  1. 正向扩散过程:向图像逐渐添加高斯噪声,直到图像完全无法识别,这个过程可以被形式化为顺序扩散马尔可夫链。
  2. 潜空间表示:将图像压缩到低维的潜在空间(Latent Space)中,以减少计算量和提高生成速度。
  3. 学习逆向过程:训练一个神经网络来预测每一步中噪声的分布,并逐步去除噪声,从而恢复出清晰的图像。
  4. 文本到图像的生成:结合文本编码器和图像解码器,根据文本描述生成相应的图像。

扩散模型的关键优势在于其生成高质量图像的能力,以及相比其他生成模型(如 GANs)在计算效率和稳定性上的优势。Stable Diffusion 等模型就是基于扩散模型的文本到图像生成工具,能够根据文本提示生成逼真的图像。

扩散模型的逆向过程,即从噪声中恢复图像的过程,可以类比为雕刻,AI 逐步去除不必要的部分,最终得到清晰的图像。这个过程可以逐步进行,也可以一次性完成,取决于模型的具体实现和采样算法。

从 2015 年被引入图像生成领域,直到近几年才真正受到关注。2020 年开始,关于扩散模型的研究领域兴起,支撑着许多最先进的图像生成系统。

无条件扩散模型可以从特定的图像(如人脸)中训练,并学习生成新的图像实例。还能用于图像超分辨率,增强低质量图像。

扩散模型还可以从文本提示生成图像,或者用于图像到图像的转换,以及图像编辑,比如添加或删除某些内容。

基本思想是通过迭代的正向扩散过程系统地并逐渐破坏数据分布中的结构,具体是向图像添加噪声,然后学习一个反向扩散过程,以恢复数据结构。目标是让模型学会去噪,以去除添加的噪音,从而能够从纯噪声图像开始合成新的图像。

Sora 是一个扩散模型,给定输入的噪声块(以及像文本提示这样的条件信息),它被训练来预测原始的“干净”分块。Sora 是一个扩散 Transformers 变换器,在包括语言建模、计算机视觉和图像生成在内的多个领域展示了显著的扩展性。在视频生成中,随着训练计算增加,固定种子和输入的视频样本质量显著提高。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 图像中什么是difussion?

[title]问:AI图像中什么是difussion?在AI图像生成中,"diffusion"(扩散)通常指的是一类生成模型,称为扩散模型(Diffusion Models)。这类模型通过逐步引入噪声到数据中,并训练网络学习逆向过程来生成数据。扩散模型在图像生成领域中应用广泛,特别是在文本到图像的生成任务中表现出色。扩散模型的工作原理可以概括为以下几个步骤:1.正向扩散过程:向图像逐渐添加高斯噪声,直到图像完全无法识别,这个过程可以被形式化为顺序扩散马尔可夫链。2.潜空间表示:将图像压缩到低维的潜在空间(Latent Space)中,以减少计算量和提高生成速度。3.学习逆向过程:训练一个神经网络来预测每一步中噪声的分布,并逐步去除噪声,从而恢复出清晰的图像。4.文本到图像的生成:结合文本编码器和图像解码器,根据文本描述生成相应的图像。扩散模型的关键优势在于其生成高质量的图像的能力,以及相比其他生成模型(如GANs)在计算效率和稳定性上的优势。Stable Diffusion等模型就是基于扩散模型的文本到图像生成工具,它们能够根据文本提示生成逼真的图像。扩散模型的逆向过程,即从噪声中恢复图像的过程,可以类比为雕刻,AI逐步去除不必要的部分,最终得到清晰的图像。这个过程可以逐步进行,也可以一次性完成,取决于模型的具体实现和采样算法。总的来说,扩散模型为AI图像生成提供了一种强大的技术手段,能够在多种场景下生成高质量的图像。内容由AI大模型生成,请仔细甄别

4. 图像生成

在本文中,我们特别关注一种较新的图像生成模型系列,即扩散模型。这些模型从物理学,特别是热力学中汲取灵感。尽管它们首次在2015年被引入图像生成领域,但这个想法直到近几年才真正开始受到关注。从2020年开始,我们已经看到了一个关于扩散模型的巨大研究领域的兴起,它们支撑着许多最先进的图像生成系统。[heading2]无条件扩散模型[content]您可能已经熟悉了当前扩散模型在许多不同用例中展现的潜力。例如,无条件扩散模型没有额外的输入或指令,它可以从特定的图像(如人脸)中训练,并学习生成新的图像实例。另一个无条件的应用例子是图像超分辨率,它在增强低质量图像方面表现出色。[heading2]文本到图像和图像编辑[content]扩散模型还可以从文本提示生成图像,或者用于图像到图像的转换,在这个过程中,我们可以编辑图像本身,比如添加或删除某些内容。[heading1]扩散模型的工作原理[content]现在,让我们更深入地了解扩散模型,并讨论它们是如何工作的。[heading2]正向和反向扩散[content]基本思想是通过迭代的正向扩散过程系统地并逐渐破坏数据分布中的结构。具体来说,这将迭代地向图像添加噪声。然后,我们学习一个反向扩散过程,以恢复数据结构。这产生了一个高度灵活和易于处理的数据生成模型。换句话说,我们可以迭代地向图像添加噪声,然后我们可以训练一个模型,这个模型学会了如何对图像进行去噪,从而生成新的图像。[heading2]目标:去噪[content]这里的目标是我们希望这个模型学会去噪,以去除添加的噪音。在实践中,我们可以从纯噪声图像开始,通过这个模型,最终能够合成新的图像。

Sora 原理解释

Sora is a diffusion model; given input noisy patches(and conditioning information like text prompts),it’s trained to predict the original “clean” patches.Importantly,Sora is a diffusion *transformer*.Transformers have demonstrated remarkable scaling properties across a variety of domains,including language modeling,computer vision,and image generation.Sora是一个扩散模型;给定输入的噪声块(以及像文本提示这样的条件信息),它被训练来预测原始的“干净”分块。重要的是,Sora是一个扩散Transformers变换器。变换器在包括语言建模、计算机视觉和图像生成在内的多个领域展示了显著的扩展性。In this work,we find that diffusion transformers scale effectively as video models as well.Below,we show a comparison of video samples with fixed seeds and inputs as training progresses.Sample quality improves markedly as training compute increases.在这项工作中,我们发现扩散变换器(Diffusion transformers)作为视频模型也能有效扩展。下面,我们展示了随着训练计算增加,固定种子和输入的视频样本质量显著提高的比较。file:scaling_0.mp4Base computefile:scaling_1.mp44x computefile:scaling_2.mp432x compute

Others are asking
稳定扩散(Stable Diffusion)是如何运作的
稳定扩散(Stable Diffusion)的运作方式如下: 消除图像中的噪点:拍照太暗时会产生噪点,稳定扩散用于生成艺术作品,其本质是“清理”图像。它比手机图像编辑器中的噪点消除滑块复杂得多,它了解世界的样子和书面语言,并以此指导噪点消除过程。例如,就像艺术家利用对特定风格和世界的了解来清理图像一样,稳定扩散也在做类似的事情。 “推理步骤”:稳定扩散是逐步去除噪点的。 编写稳定扩散程序:初始噪声和文本描述作为输入,还有一组不变的约 10 亿个参数。输入图像由约 79 万个值表示,提示中的 33 个“tokens”由约 2.5 万个值表示。这 10 亿个参数分布在约 1100 个不同大小的矩阵中,每个矩阵在数学运算的不同阶段被使用。 概述:稳定扩散是一个巨大的神经网络,是纯粹的数学,我们并不完全知道它在做什么,但它能工作是因为经过了训练。先从高层次解释,再展示其内部运作方式。 原文地址:https://mccormickml.com/2022/12/21/howstablediffusionworks/ 作者:Chris McCormick(斯坦福大学毕业,一直从事计算机视觉、机器学习和 NLP 领域工作) 发表时间:2022 年 12 月 21 日 译者:通往 AGI 之路 《》入门第五篇
2024-11-29
请帮我介绍一下大语言模型和扩散模型的区别
大语言模型和扩散模型主要有以下区别: 1. 处理的信息类型: 大语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。 扩散模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,能在更多样化的任务中应用。 2. 应用场景: 大语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 扩散模型由于能够处理多种信息类型,可以应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 3. 数据需求: 大语言模型主要依赖于大量的文本数据进行训练。 扩散模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。 4. 生成过程: 扩散模型涉及模型学习从图像中去除噪声,其正向扩散过程是从干净的图像开始,迭代地添加噪点。 大语言模型则是通过分析和学习大量文本数据来生成自然语言文本。 5. 面临的挑战: 扩散模型可能生成不真实的图像,难以控制,训练的计算成本可能很高。 大语言模型在推理能力方面相对较弱。
2024-09-29
能用简单易懂的方法给我讲一下扩散模型的原理、核心技术思想和工作流程吗
扩散模型(Diffusion Models)是深度学习领域中一种强大的生成模型,它最近在生成图像、音频和其他类型的数据方面取得了显著的进展。扩散模型的核心思想是模拟物理过程中的扩散现象,将其应用于数据生成。 原理和核心技术思想: 1. 正向过程(Forward Process): 扩散模型的灵感来源于物理学中的扩散现象,比如一滴墨水在清水中逐渐扩散开来。 在数据生成的上下文中,正向过程模拟了数据逐渐“变得随机”的过程。从一个确定的输入数据点(比如一张清晰的图片)开始,通过逐步添加噪声,将其转化为一个完全随机的噪声分布。 2. 逆向过程(Reverse Process): 与正向过程相反,逆向过程的目标是从噪声数据重构出原始数据。 这个过程就像是逆转扩散过程,逐步预测并去除噪声,最终恢复出清晰的数据。 3. 概率框架: 扩散模型在概率框架下工作,它定义了数据从初始状态到噪声状态的马尔可夫链,以及从噪声状态恢复到初始状态的逆马尔可夫链。 4. 训练过程: 通过训练一个神经网络来学习逆向过程中的每一步,即如何从噪声数据中去除噪声并逐步恢复出原始数据。 工作流程: 1. 初始化: 选择一个初始数据点,比如一张图片。 2. 正向扩散: 通过逐步添加噪声,将初始数据点转化为噪声数据。这个过程可以看作是一系列逐步增加噪声的步骤。 3. 训练逆向模型: 使用神经网络学习如何逆转扩散过程。在训练阶段,网络会接收到部分噪声数据,并尝试预测原始数据。 4. 逆向去噪: 在生成阶段,从随机噪声开始,利用训练好的神经网络逐步去除噪声,每一步都使数据更接近原始状态。 5. 生成数据: 经过多轮逆向去噪步骤后,最终生成清晰的数据,如高质量的图片或音频。 扩散模型的一个关键优势是它能够生成高保真度的复杂数据,如高分辨率的图像。此外,由于其概率性质,它还可以生成多样化的数据样本,为数据生成任务提供了新的可能性。 扩散模型在生成任务中取得的成果令人瞩目,但同时也需要大量的计算资源,因为它们通常需要数百到数千个步骤来生成数据。不过,随着硬件的发展和模型优化,扩散模型的应用前景非常广阔。
2024-04-22
大模型企业落地方案有哪些
大模型企业落地方案主要包括以下几个方面: 1. 提高内容可信: 做具备通用能力的大模型,通过商业交付应用、反馈和评测来解决内容可信问题。 不断优化数据以解决实际应用问题,如自我学习能力等。 走向垂直化,结合场景用一个模型和框架提高内容精准度。 2. 解决算力成本高、训练重复和资源紧缺的问题: 以 GPT3 模型为例,现有千卡集群训练一个月,单次训练周期一个月,总成本超过 1200 万美金,且全行业训练卡持续涨价。 目前仍无人能用商业化的国产芯片做大模型训练。 3. 降低大模型价格或使用垂直领域模型落地。 4. 以百度智能云为例: 在 IaaS 层,百舸 AI 异构计算平台解决算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,提升算力管理能力和模型训练效率,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大算力支撑。 在 Paas 层,千帆大模型平台解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面工具链,支持定制化模型开发,通过 AppBuilder 提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用数据反馈到模型中形成良性循环,持续优化模型性能。 在 SaaS 层,提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,大模型在实际应用中存在一些问题,如知识的局限性、幻觉问题和数据安全性问题,而 RAG 是解决上述问题的一套有效方案,它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可以和微调结合使用,两者并不冲突。
2025-03-12
有哪些辅助输出3d模型资源的ai工具推荐一下
以下是一些辅助输出 3D 模型资源的 AI 工具推荐: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材。体验地址:https://cube.csm.ai 。 2. Move AI 推出的 Move API:能从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 。 3. ComfyUI 3D Pack:可快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 。 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I 。 5. Media2Face:3D 面部动画创造工具,根据声音生成同步的 3D 面部动画,允许个性化调整,如情感表达,应用于对话场景、情感歌唱等多种场合。网址:https://sites.google.com/view/media2face 、https://arxiv.org/abs/2401.15687 、https://x.com/xiaohuggg/status/1752871200303480928?s=20 。 6. SIGNeRF:在 3D 场景中快速生成和编辑对象,新增或替换场景中的物体,新生成场景与原场景无缝融合。网址:https://signerf.jdihlmann.com 、https://x.com/xiaohuggg/status/1744950363667759474?s=20 。 7. Luma AI 发布的 Genie 1.0 版本:文本到 3D 模型转换工具,生成详细逼真的 3D 模型,支持多种 3D 文件格式,获得 4300 万美元 B 轮融资。网址:https://lumalabs.ai/genie?view=create 、https://x.com/xiaohuggg/status/1744892707926122515?s=20 。 8. BakedAvatar 动态 3D 头像:从视频创建逼真 3D 头部模型,实时渲染和多视角查看,兼容多种设备,交互性编辑。网址:https://buaavrcg.github.io/BakedAvatar/ 、https://x.com/xiaohuggg/status/1744591059169272058?s=20 。 此外,在 CAD 领域,也存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 但使用这些工具通常需要一定的 CAD 知识和技能,对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2025-03-11
Berkeley做了一个AI相关的模型
以下是关于 Berkeley 相关的 AI 模型信息: 1 月 11 日,UC Berkeley 的 NovaSky 团队推出了 SkyT132BPreview 推理模型。这是一款开源的推理模型,基于 Qwen2.532BInstruct 训练而成,拥有 32B 参数,在数学、编程、物理和科学等复杂任务领域表现出色。使用入口完全开源,提供训练数据集和代码。NovaSky 团队隶属于加州大学伯克利分校 Sky Computing 实验室,成立于 2020 年,致力于推动低成本、高效率的 AI 模型开发。相关链接:https://novaskyai.github.io/posts/skyt1 5 月 23 日,伯克利实验室研究了“宙斯盾”数据集,用 YOLOv8 模型训练,美军及其盟友驱逐舰关键部件的检测精度达 0.926。相关链接:https://arxiv.org/pdf/2405.12167v1
2025-03-11
AI 大模型产品经理
以下是为您整理的关于 AI 大模型产品经理的相关信息: 招聘信息: 1. 北京: 大模型效果评测:针对大模型效果的综合评估,开发、沉淀并持续优化评测方法,确立评测流程及标准化工作,执行评测任务并撰写分析报告,推进大模型优化。 协助算法及产品同学不断提高 AI 准确性,提升用户体验。 基本要求:研究生及以上学历,计算机、金融、数据分析等相关专业优先。熟悉大模型及相关 NLP 技术者优先;有 AIGC 相关实习经验者优先;代码能力强且有利用大模型解决编程问题的经验,能够熟练的使用 python、sql、java 等工具,能独立完成数据分析/处理任务优先;能够尽快到岗,每周 5 天出勤,实习时间 4 个月以上。 2. 杭州: 杭州智诊科技有限公司招聘医疗大模型的算法工程师/产品经理。 岗位职责:负责跨语言领域 embedding 模型训练,如 SimCSE 通过对比学习方式进行无监督+有监督训练;负责构建知识检索增强模块,保证相关知识信息召回工作;基于 Chat GLM 系列模型进行 LLMasAgent 的落地应用;负责搭建智能体协同决策系统,从系统层面提供诊断决策支持。 任职要求:硕士及以上学历,计算机相关专业毕业,有较强的工程能力;熟悉 Transformer 结构,对 BERT、GPT、BART、T5 等常见的模型有深入的了解,有 ChatGLM/Llama 等模型的使用/训练经验者优先;熟悉 LangChain 等 LLM 的应用框架,熟悉 prompt engineering,能有效借助提示词来充分利用大模型的能力;熟悉知识图谱,对比学习,有信息检索相关实际项目经历;熟悉 AI agent 多智能体协同,有相关领域成熟项目落地,医疗行业优先;熟悉 PyTorch、Huggingface 等深度学习工具,熟悉 Python 编程语言和 Linux 开发环境,有扎实的编程功底。 培训课程: 第一期「AI 实训营」手把手学 AI【第一期:大咖带你在阿里云百炼从零搭应用】,讲师为银海,其为 AI 产品经理,通往 AGI 之路社区共建者,5+大模型厂商资深讲师,全网粉丝量 3W+,在 AI Agent、多模态大模型、企业级 AI 应用等多领域具备丰富实战经验。
2025-03-11
AI大模型训练是什么意思
AI 大模型训练是一个复杂的过程,主要包括以下方面: 1. 数据转换:当请求输入到模型时,会从自然语言形式转化为机器可理解的格式,通常是向量。 2. 数学计算确定参数:类似于通过已知的几组(x,y)值计算方程式 y=f(x)=ax+b 中的参数 a 和 b,大语言模型通过计算确定可能多达 1750 亿个的参数。 3. 一般训练步骤: 无监督学习:分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 清洗出好的数据。 指令微调:训练模型理解并执行具体指令,如翻译文本,以回答问题,此阶段数据输入量相对减少。 对齐过程:引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 4. 生成式预训练:是机器学习领域由来已久的概念,如 GPT 模型基于 Transformer 模型,在大型未标记文本数据集上进行预训练,并能生成类似人类自然语言的文本。 5. 大模型特点: 强大在于庞大的参数数量,这些参数在学习过程中不断调整,帮助模型深入理解和生成数据。 训练依赖大量数据,包括文本、图像、音频等,通过对数据的学习掌握丰富知识和技能。 总之,大模型训练是一个涉及多步骤、大量数据和复杂计算的过程,旨在使模型具备强大的语言处理和生成能力。
2025-03-11
如何学习使用AI模型
以下是关于学习使用 AI 模型的一些建议和知识: Teachable Machine: 这是由 Google 开发的机器学习工具,可应用于商品说明书、自动驾驶、教学互动等多个场景。使用步骤如下: 1. 收集数据:可上传图片、录制声音或动作视频作为训练数据。 2. 训练模型:用收集的数据训练模型,并测试其能否正确识别新的图片、声音或动作。 3. 导出模型:完成训练后,可下载或上传到网上用于其他项目。 它具有多种优势: 1. 允许用户快速、简单地创建机器学习模型,无需专业知识或编程技能。 2. 提供多种创建机器学习模型的方式,非常灵活和用户友好。 3. 支持使用文件或实时捕捉示例,用户可选择上传已有文件或实时录制。 4. 可以在本地完成训练,保护用户隐私。 5. 生成的模型是真实的 TensorFlow.js 模型,可在任何运行 JavaScript 的地方工作,还能导出到不同格式在其他地方使用。 AI 模型相关技术原理: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因为有很多层所以叫深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-11