Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

当代人工智能的进步正在催化博弈论的复兴

Answer

当代人工智能的进步正在催化博弈论的复兴。以下是关于人工智能简史的相关内容: 早期的国际象棋对弈程序以搜索为基础,通过程序尝试估计对手在给定棋步数量下可能走的棋步,并依据在几步棋内所能达到的最佳位置选择最佳棋步,这促进了阿尔法-贝塔剪枝搜索算法的发展。搜索策略在对局即将结束时效果良好,因为此时棋步可能性的搜索空间局限在很小范围内,但在对局刚开始时,搜索空间巨大,需考虑通过学习人类棋手的现有对局来改进算法。随后的实验采用了基于案例的推理,即程序在知识库中寻找与当前棋局位置相似的案例来决定棋步。能够战胜人类棋手的现代对弈程序基于神经网络和强化学习,程序通过长时间与自己对弈,从自身错误中学习来学会下棋,这与人类学习下棋过程相似,且计算机程序学习速度更快。

人工智能作为一个领域始于二十世纪中叶,最初符号推理流行并带来重要进展,如专家系统,但因从专家提取知识、用计算机可读形式表现及保持知识库准确性复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。随着时间推移,计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出可与人类媲美的性能,过去十年中,“人工智能”一词多被用作“神经网络”的同义词。在创建国际象棋计算机对弈程序时,可观察到这些方法的变化。

Content generated by AI large model, please carefully verify (powered by aily)

References

人工智能简介和历史

早期的国际象棋对弈程序是以搜索为基础的——程序尝试估计对手在给定棋步数量下可能走的棋步,并根据在几步棋内所能达到的最佳位置选择最佳棋步。这带来了[阿尔法-贝塔剪枝](https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning)搜索算法的发展。搜索策略在对局即将结束时效果很好,因为此时搜索空间对应的棋步可能性局限在非常小的范围内。然而在对局刚刚开始时,搜索空间非常巨大,需要考虑通过学习人类棋手之间的现有对局来改进算法。随后的实验采用了[基于案例的推理](https://en.wikipedia.org/wiki/Case-based_reasoning),即程序在知识库中寻找与当前棋局位置非常相似的案例,以此来决定自己的棋步。能够战胜人类棋手的现代对弈程序都基于神经网络和强化学习,程序通过长时间与自己的对弈,从自己的错误中学习,以此来学会下棋,这与人类学习下棋的过程非常相似。不过,计算机程序可以用更少的时间下更多的棋,因此学习速度更快。✅对人工智能玩过的其他游戏做一个小调研。同样,我们可以看到创建“会说话的程序”(可能通过图灵测试)的方法是如何变化的:

人工智能简介和历史

人工智能作为一个领域始于二十世纪中叶。最初,符号推理非常流行,也带来了一系列重要进展,例如专家系统——能够在某些有限问题的领域充当专家的计算机程序。然而,人们很快发现这种方法无法实现应用场景的大规模拓展。从专家那里提取知识,用计算机可读的形式表现出来,并保持知识库的准确性,是一项非常复杂的任务,而且因为成本太高,在很多情况下并不适用。这使得20世纪70年代出现了“人工智能寒冬”([AI Winter](https://en.wikipedia.org/wiki/AI_winter))。随着时间的推移,计算资源变得越来越便宜,可用的数据也越来越多,神经网络方法开始在计算机视觉、语音理解等领域展现出可与人类相媲美的卓越性能。在过去十年中,“人工智能”一词大多被用作“神经网络”的同义词,因为我们听到的大多数人工智能的成功案例都是基于神经网络的方法。我们可以观察一下这些方法是如何变化的,例如,在创建国际象棋计算机对弈程序时:

Others are asking
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
根据我的论文题目撰写一段引言,要求达到人文社科的极高水准:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能正以前所未有的态势重塑着我们的生活和社会格局。在这一宏大背景下,博弈论的应用成为了一个引人瞩目的焦点。数据科学的崛起为我们提供了海量且复杂的数据资源,而如何从这些数据中挖掘出有价值的信息,并将其转化为明智的决策,成为了摆在我们面前的关键问题。博弈论,作为一门研究决策主体相互作用时的策略选择和均衡结果的学科,为我们在通用人工智能时代的决策过程提供了深刻的理论基础和实用的分析工具。它不仅能够帮助我们理解个体和群体在复杂环境中的行为模式,还能够预测和优化决策结果,从而实现决策价值的最大化。因此,深入探讨通用人工智能时代中博弈论在数据科学与决策价值方面的应用,具有极其重要的理论意义和现实价值。
2024-09-28
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md
2025-02-17
人工智能时代对社会有什么冲击
人工智能时代对社会的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢,人们不必担心缺乏事情可做。 2. 能力放大:能使人类天生的创造和彼此有用的欲望得到前所未有的放大,社会将重新进入不断扩张的世界。 3. 深度学习:是一种有效的算法,计算能力和数据量越大,解决难题的能力越强,将随着规模而变得更好,对全球人民生活产生有意义的改善。 4. 个人助理:人工智能模型将很快作为自主的个人助理,代表用户执行特定任务。 5. 资源分配:获得充足的计算和能源对于实现人工智能民主化和防止不平等至关重要。 6. 风险控制:控制人工智能的风险对于最大限度地发挥其优势并确保积极的未来至关重要。 同时,在教育方面,孩子将拥有虚拟导师,能够提供个性化教学,类似概念还可应用于医疗保健改进、创建各种软件等领域,带来共享的繁荣。
2025-02-16
什么是人工智能
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为的科学,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机做事。 然而,像“根据照片判断一个人的年龄”这类任务,因无法明确大脑完成此任务的具体步骤,所以难以编写程序让计算机完成,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 能做任何人类可以做的事。 在人工智能术语方面: 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的映射,一般有输入 A 必然输出 B 的软件。 数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2025-02-16
关于音频生成的人工智能工具有哪些
以下是一些关于音频生成的人工智能工具: ElevenLabs:一家前沿人工智能公司,专注于文本转语音、语音变声器、配音、文本转音效和语音克隆,为创作者、企业和开发者提供超逼真和可定制的语音解决方案。前 5000 名注册用户可享受 2 个月的入门计划。 Hailuo Audio by Minimax:面向创作者和电影制作人的下一代音乐生成、文本转语音和语音克隆模型。 Cartesia:优质文本转语音服务,既以开发者为中心,又适合实时对话用例,专注于行业领先的延迟、逼真的声音和准确的发音。提供 1 个月的专业计划。 Sync:研究公司,致力于为动画师、开发者和视频编辑提供前沿的人工智能视频口型同步解决方案。2 个月的 Sync 创作者层级+额外生成积分。 Tunes by Freepik:使用 Freepik Tunes 让您的项目更具表现力。发现精选音乐、高质量音效和强大的音频工具,可在 Freepik Tunes 上无限制下载。 以下是一些人工智能音频初创公司: Lemonaide Music:与 DAW 集成的生成音乐工具,100%免版权费。 tuney.io:为创意媒体提供的伦理音乐 AI。 KORUS AI:AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 TRINITI:通过音乐赋予新的创作和表达方式。 voice swap:使用 AI 改变歌唱声音。 mix audio:为创造力和生产力提供 AI 音乐。 Audiogen:使用 AI 生成声音、音效、音乐、样本、氛围等。 Wavtool:带有 AI 助手并支持本地 VST 插件的网页 DAW。 Wavacity:Audacity®音频编辑器的网页版。
2025-02-16
人工智能对现在时代有什么冲击
人工智能对现在时代的冲击主要体现在以下几个方面: 1. 劳动力市场:预计在未来几年对劳动力市场产生重大影响,包括好的和坏的方面,但工作变化速度比多数人想象的慢。 2. 社会发展:使社会重新进入不断扩张的世界,人们可以再次专注于正和游戏,天生的创造和彼此有用的欲望将得到前所未有的放大。 3. 技术进步:深度学习有效,随规模扩大预期改善,能帮助解决难题,模型将作为个人助理执行特定任务,促进各领域科学进展。 4. 资源与普及:降低计算成本以普及人工智能,否则可能导致其成为有限资源,引发战争并成为富人工具。 5. 社会变革:社会和经济将发生长期巨大变革,人们会发现新的做事、互助和竞争方式。 6. 不均衡影响:AGI 将产生不均衡影响,一些行业变化小,科学进步可能更快,许多商品价格大幅下跌,奢侈品和受限资源价格上涨。 7. 公共政策:关于如何将人工智能系统融入社会的公共政策和集体意见非常重要,要权衡安全性和个人授权。 8. 社会控制:存在专制政府利用人工智能进行大规模监控从而剥夺人民自主权的风险。
2025-02-16
如果让你来给小学生设计一门人工智能视频课,12集,你会怎么设计
对于为小学生设计一门 12 集的人工智能视频课,以下是我的设计思路: 第一集:《走进神奇的 AI 世界》 介绍什么是人工智能,通过有趣的例子展示 AI 在日常生活中的应用,激发学生的兴趣。 第二集:《AI 的历史之旅》 讲述人工智能的发展历程,从早期的概念到现代的突破。 第三集:《AI 如何理解我们》 讲解 AI 是如何处理和理解人类输入的信息,如语言、图像等。 第四集:《智能机器人小伙伴》 介绍机器人如何通过 AI 技术实现各种功能和动作。 第五集:《AI 在游戏中的魔法》 展示 AI 在游戏中的应用,如游戏角色的智能行为。 第六集:《AI 与医疗保健》 讲述 AI 在医疗领域的作用,如疾病诊断、医疗影像分析等。 第七集:《AI 与交通出行》 介绍 AI 如何改善交通状况,如智能交通系统。 第八集:《AI 与教育的碰撞》 探讨 AI 在教育中的应用,如个性化学习、智能辅导。 第九集:《AI 绘画的奇妙世界》 让学生了解 AI 绘画的原理和创作过程。 第十集:《AI 音乐的旋律》 介绍 AI 在音乐创作和演奏方面的应用。 第十一集:《AI 的未来展望》 一起畅想未来 AI 可能带来的更多变化和创新。 第十二集:《我和 AI 的故事》 鼓励学生分享自己对 AI 的理解和想象,总结课程内容。 在每一集的设计中,都会采用生动有趣的动画、简单易懂的案例和互动环节,让小学生能够轻松理解和参与。
2025-02-14