直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

coze怎么接入微信

回答

要让 Coze 接入微信,您可以按照以下步骤进行操作:

  1. 获取机器人 ID:在个人空间中找到要接入微信的机器人,比如画小二智能小助手。点击对应的机器人进入机器人编辑界面,在浏览器地址栏“bot/”之后的数据就是该机器人的 Bot ID,此 ID 是唯一编号的。
  2. Docker 中配置 COW 组件:
    • 登录宝塔面板,在宝塔面板当中可视化地控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。
    • chatgpt-on-wechat(简称 CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉等,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。
    • 点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。
    • 点击“wc-andy-ai-bot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。此界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到“WeChat login success”,就成功将 Bot 接入微信中了。
  3. 绑定微信:需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制。点击容器,可以看到运行的是两个服务。点击“wc-andy-ai-bot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。这个界面不会实时显示,为了验证是否成功,需要手动刷新一下。点击“刷新日志”,就能看到“WeChat login success”,提示微信登录成功。为了确保微信是否实时在线,点击“日志管理”的“wc-andy-ai-bot”的“刷新日志”。如果显示“wechat login seccess”则表示微信正常登录中。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

在个人空间中找到自己要接入到微信中的机器人,比如我有计划要将画小二智能小助手接入到微信群中。点击对应的机器人进入机器人编辑界面。在浏览器地址栏的bot/之后的数据就是该机器人的Bot ID,比如我这个机器人Bot ID就是7371793472670072866,这个是唯一编号的。

Bot智能体 | 用Coze实现【多模态资讯的跨平台推送】

登录宝塔面板后,接下来需要在宝塔面板当中的来可视化的控制云服务器,在上面部署docker容器,启动COW项目与微信取得关联。chatgpt-on-wechat(简称CoW)项目是基于大模型的智能对话机器人,可以接入微信公众号、企业微信应用、飞书、钉钉,可选择GPT3.5/GPT4.0/GPT4o/Claude/Gemini/文心一言/讯飞星火/通义千问/LinkAI/ChatGLM/月之暗面,能处理文本、语音和图片,通过插件访问操作系统和互联网等外部资源。我们用这个方式来与微信进行链接。点击“Docker”中的“项目模板”中的“添加”按钮项目模板代码示例如下:将上面编译好的内容复制进来在容器中创建容器,选择容器编排,填入模板和名称,确定现实运行成功点击容器后,可以看到运行的是两个服务,因为接口文档中启动了两个服务。然后点击“wc-andy-ai-bot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。这个界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到WeChat login success,就成功将Bot接入微信中了。

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

需要提前准备一个闲置的微信,因为这种方法是非官方接口,有可能微信号会受到官方限制,用一个闲置微信。点击容器,可以看到运行的是两个服务,这是因为接口文档中启动了两个服务。点击“wc-andy-ai-bot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。这个界面不会实时数显,为了验证是否成功,需要手动刷新一下。点击“刷新日志”,就能看到WeChat login success,就是提示微信登录成功的意思。为了确保微信是否实时在线,点击“日志管理”的“wc-andy-ai-bot”的“刷新日志”。如果显示“wechat login seccess"则表示微信正常登录中。

其他人在问
如何使用coze
使用 Coze 的步骤如下: 1. 先跑起来,创建第一个 bot: 打开 coze.cn/home,点击创建 Bot。 输入随便的信息,如“尝试联网”。 尝试询问:今天的 hacker news 上有什么新闻?可能会答不出。 了解到 AI 如同书呆子,聪明但不出门不知外事也不会交流。 引入联网插件 WebPilot,插件> + >选择 WebPilot,重新尝试联网,再次询问上述问题可能成功。 2. 用上「回复逻辑」,让它能将链接转换成回答。 3. 发布到飞书,基本成型。 4. 【进阶】使用工作流/workflow & 代码/code,更灵活自定。 安装 Coze Scraper 并采集数据的步骤如下: 1. 登录。 2. 在左侧菜单栏,选择一个工作区。 3. 在工作区内,单击知识库页签。 4. 创建一个知识库或点击一个已存在的知识库。 5. 在知识库页面,单击新增单元。 6. 在文本格式页签下,选择在线数据,然后单击下一步。 7. 单击手动采集,然后在弹出的页面点击权限授予完成授权。 8. 在弹出的页面输入要采集内容的网址,然后单击确认。 9. 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 10. 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。更多关于知识库的内容,详情请参考。
2024-11-17
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。其参数很简单,只有一个要优化的提示词。 通常这类节点很好用。例如用一开始就在用的文生图提示词“1 girl in real world”来试试。优化前和优化后都生成一张图做效果对比,它会为我们添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片为真实照片的感觉上,测试结果中文生图模型中“in real world”来控制更真实的图片生成效果比“realistic”效果好。(喜欢哪个见仁见智,不过也有抽卡因素,至少右边的打光感觉不错。)
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。 参数很简单,只有一个要优化的提示词。 例如,用一开始就在用的文生图提示词“1 girl in real world”来试用。优化后会为提示词添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”来控制比“realistic”效果好。
2024-11-16
coze中的提示词优化节点在哪里
在 Coze 中,提示词优化节点的相关信息如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。参数很简单,只有一个要优化的提示词。 以文生图提示词“1 girl in real world”为例进行试用,优化后添加了很多具体信息,如在带着好奇心看书、环境中有阳光、色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制效果比“realistic”好。 此外,Coze 还涉及其他节点,如智能抠图、画质提升等。在复刻吴恩达开源的 AI 翻译项目时,工作流分为新建工作流、导入核心流程、设置节点等步骤,包括选择翻译的源语言和目标语言、选择大模型、配置反思优化的提示词等。
2024-11-16
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
AI免费编写微信小程序
以下是关于利用 AI 免费编写微信小程序的相关内容: 开发:微信小程序 会手把手教大家如何利用 chatgpt 来实现微信小程序的搭建,前半部分先简单介绍小程序的注册,后半部分介绍开发上线。详情可参考: 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人 搭建步骤详解: 注册 Coze 账号 访问 Coze 官网快速注册。Coze 是字节跳动出品,其中文版为 https://www.coze.cn/(支持大模型:kimi、云雀),本次教程使用中文版 Coze;英文版为 https://coze.com/(支持大模型:chatgpt4),产品定位为新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 创建你的机器人 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。工作空间选“个人空间”即可。小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。
2024-11-16
微信机器人
以下是关于微信机器人的相关信息: 【入门级】教你用最简单的方式搭建微信机器人 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若未成功,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,返回“第三章,第 7 步”更改设置。 进行任何更改后,需“返回首页 右上角 点击重启,重启一下服务器”。熟悉 Linux 操作也可通过重启进程的方式来重启服务。 然后,在“文件”的【终端】里,输入“nohup python3 app.py & tail f nohup.out”重新扫码登录。 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可加 Stuart 个人微信询问。 零基础模板化搭建 AI 微信聊天机器人 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器 配置部署 COW 组件 在复制的 dockercompose.yml 文件中修改配置串联微信号和已创建好的 AI 机器人,配置参考来源:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY 等。私聊或群交流时最好加上前缀触发机器人回复,如配置的,群组里对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 【保姆级】基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小 本教程基于 Hook 机制,与之前的 COW 机器人方式不同。 优势:Hook 有相对更高的稳定性和安全性,更简单,易上手。 劣势:目前插件相对较少,且仅支持 Windows 系统。 此项目在 Windows 系统上运行,无需服务器,对小白更友好。能结合 FastGPT 使用,且对群发功能进行了优化和二开,目前在内测中。 此机器人功能:基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣小功能。教程以 Windows10 系统为例。
2024-11-07
微信机器人
以下是关于微信机器人的相关信息: 【入门级】教你用最简单的方式搭建微信机器人 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若未成功,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,返回“第三章,第 7 步”更改设置。 进行任何更改后,需“返回首页 右上角 点击重启,重启一下服务器”。熟悉 Linux 操作也可通过重启进程的方式来重启服务。 然后,在“文件”的【终端】里,输入“nohup python3 app.py & tail f nohup.out”重新扫码登录。 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可加 Stuart 个人微信询问。 零基础模板化搭建 AI 微信聊天机器人 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器 配置部署 COW 组件 在复制的 dockercompose.yml 文件中修改配置串联微信号和已创建好的 AI 机器人,配置参考来源:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY 等。私聊或群交流时最好加上前缀触发机器人回复,如配置的,群组里对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 【保姆级】基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小 本教程基于 Hook 机制,与 COW 机器人方式不同。 优势:Hook 有相对更高的稳定性和安全性,更简单,易上手。 劣势:目前插件相对较少,且仅支持 Windows 系统。 此项目在 Windows 系统上运行,无需服务器,对小白更友好。能结合 FastGPT 使用,完善了群发功能,目前在内测中。 此机器人功能:基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣小功能。教程以 Windows10 系统为例。
2024-11-07
企业微信个人账户接入大模型
企业微信个人账户接入大模型可以参考以下内容: 基于 COW 框架的实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。 张梦飞同学写了更适合小白的使用教程: 。 可以实现:打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等等);常用开源插件的安装应用。 正式开始前需要知道:ChatBot 相较于在各大模型网页端使用区别,本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;本文只探讨操作操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 有多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多部署方法:本地运行、服务器运行、Docker 的方式。 全程白嫖拥有一个 AI 大模型的微信助手的实现步骤: 搭建,用于汇聚整合多种大模型接口,方便更换使用各种大模型,下面会告知如何白嫖大模型接口。 搭建,这是个知识库问答系统,把知识文件放进去,再把上面的大模型接进来,作为分析知识库的大脑,最后回答问题,如果不想接到微信去,自己用用,搭建完就可以,它也有问答界面。 搭建,里面的 cow 插件能进行文件总结、MJ 绘画的能力。
2024-11-06
如何借鉴“决战拜年之巅”:这是一款基于 GLM 大模型开发的微信小程序游戏,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问,自由对话打出属于自己的结局。实现一个工作场合的游戏
以下是借鉴“决战拜年之巅”实现一个工作场合游戏的相关要点: 1. 开发背景:“决战拜年之巅”是参加 Globalgamejam 游戏比赛时,在 48 小时内开发的,主题源于“make me laugh”,产品负责人谐音想到江浙沪孝子排行榜的“孝”,结合春节想到做类似拜年的东西。 2. 火爆情况:在参赛群发布半成品后,在 QQ、微信迅速火爆,两天内有 200 万用户,最高峰同时在线 6 万人,服务器一度支持不了,凌晨才做好调整,后续有厂商赞助服务器,上线约一周。 3. 游戏特点:基于 GLM 大模型开发,又称过年模拟器,玩家在 10 个 AI 角色组成的家人群里,面对“七大姑八大姨”的连环拷问自由对话打出结局。 4. 借鉴要点: 明确创新主题和玩法,结合特定场景和需求。 注重用户体验,及时应对服务器等技术支持问题。 利用 AI 技术实现角色互动和自由对话。 需要注意的是,“决战拜年之巅”被认为可能是一个 chatbot 而非严格意义上的游戏。在设计工作场合的游戏时,要明确以下三个点:(具体要点未在提供的内容中明确)
2024-11-02
如何能让大模型自动读取到微信上的聊天内容。
要让大模型自动读取到微信上的聊天内容,可以参考以下几种方法: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并可白嫖大模型接口。 2. 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完成即可使用其问答界面。 3. 搭建,其中的cow插件能进行文件总结、MJ绘画等。 此外,还有作者张梦飞的方法,即把自己微信中的聊天记录导出,用自己的聊天记录去微调一个模型,最终将这个微调后的模型接入微信中替您回复消息。 另外,在创作方面,鉴于聊天记录属于绝对的个人隐私,不适合接入第三方大模型提取信息,可本地化部署LLM。例如采用百川2的国产大模型开源,如Baichuan2作为底模,先用提示工程对聊天记录进行信息提取,并在此基础上使用自有数据进行模型微调。
2024-10-31
使用coze搭建一个心理咨询机器人,将机器人接入自己开发的应用后,如何再进一步实现让ai把每个用户每天的聊天内容,总结成日记,并传回给应用展示日记
目前知识库中没有关于使用 Coze 搭建心理咨询机器人,并将用户每天聊天内容总结成日记传回应用展示的相关内容。但一般来说,要实现这个功能,您可能需要以下步骤: 1. 数据采集与存储:在机器人与用户交互过程中,采集并妥善存储聊天数据。 2. 自然语言处理与分析:运用相关的自然语言处理技术,对聊天内容进行理解和分析,提取关键信息。 3. 内容总结:基于分析结果,使用合适的算法和模型将聊天内容总结成日记形式。 4. 数据传输:建立与应用的稳定接口,将总结好的日记数据传输回应用。 这只是一个大致的思路,具体的实现会涉及到很多技术细节和开发工作。
2024-11-15
我要在自己的应用中接入AI大模型能力,请问有什么工具或lib可以简化这个过程
以下是一些可以简化在应用中接入 AI 大模型能力的工具和库: 1. 您可以搭建 ,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型。 2. 搭建 ,这是一个知识库问答系统,您可以将知识文件放入,并接入大模型作为分析知识库的大脑,它也有问答界面。 3. 搭建 ,其中的 cow 插件能进行文件总结、MJ 绘画等。 另外,基于 LangChain 平台提供的 LLM 基础模型,也能完成任意模型接口的封装。LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个抽象概念,可理解为处理语言输入和输出的黑盒。其输入是字符串表示的用户请求或问题,输出也是字符串表示的模型回答或结果。LLM 能根据不同输入调用不同大模型完成不同语言任务,具有无需关心大模型细节和复杂性、灵活选择切换大模型、可自行封装实现语言逻辑和功能等优势。 在基础通识课中,还提到了一些相关内容,如流式训练方式提升训练速度和质量,多种 AI 生成工具(如 so no 音频生成工具、能创建个人 AI 智能体的豆包、输入文本可生成播客的 Notebook LN),端侧大模型的特点,AI 工程平台(如 define、coach 等),模型社区(如魔搭社区)等。
2024-10-23
大模型如何接入企业数据库
大模型接入企业数据库的相关内容如下: 原理介绍: 从文档处理角度来看,实现流程包括配置要求。 配置要求: ChatGLM6B 模型硬件需求: 模型文件下载至本地需要 15GB 存储空间。 量化等级不同,最低 GPU 显存(推理)和最低 GPU 显存(高效参数微调)要求不同: FP16(无量化):分别为 13GB 和 14GB。 INT8:分别为 8GB 和 9GB。 INT4:分别为 6GB 和 7GB。 MOSS 模型硬件需求: 模型文件下载至本地需要 70GB 存储空间。 量化等级不同,最低 GPU 显存(推理)和最低 GPU 显存(高效参数微调)要求不同: FP16(无量化):分别为 68GB 和 。 INT8:分别为 20GB 和 。 Embedding 模型硬件需求:默认选用的 Embedding 模型约占用显存 3GB,也可修改为在 CPU 中运行。 项目启动: Web 启动:运行 web.py,若显存不足则调整 configs/model_config.py 文件中 LLM_MODEL 参数更换模型,若连接无法连接修改 web.py 文件末尾 lauch 中 0.0.0.0 为 127.0.0.1,点击 URL 进入 UI 界面。 API 模式启动。 命令行模式启动。 上传知识库: 左侧知识库问答中选择新建知识库,可传输 txt、pdf 等。可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色。例如上传公司财报,充当财务分析师;上传客服聊天记录,充当智能客服;上传经典 Case,充当律师助手;上传医院百科全书,充当在线问诊医生等等,MOSS 同理。 使用数据表: 通过在工作流中添加数据库节点对数据表进行操作。在工作流中可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。参考以下操作,在工作流中添加并配置工作流节点。在工作流中配置数据库节点前,确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。 1. 单击页面顶部的工作流页签,然后单击创建工作流。 2. 输入工作流名称和工作流的使用描述,然后单击确认。工作流名称和描述可以帮助大语言模型理解什么场景下需要调用该工作流。 1. 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 2. 根据以下信息配置数据库节点。 输入:添加 SQL 执行中需要的参数,可以是一个变量,也可以是一个固定值。 SQL:输入要执行的 SQL 语句,可以直接使用输入参数中的变量。可单击自动生成使用大模型生成 SQL。在弹出的页面中,选择这个数据库工作流生效的 Bot 和数据表,然后使用自然语言描述要执行的操作,单击自动生成生成 SQL 语句,最后单击使用。 注意:不支持 Select语法,不支持多表 Join 操作,最多返回 100 行数据。
2024-10-11
bot接入微信机器人,能用语音聊天吗
Bot 接入微信机器人可以实现语音聊天。具体步骤如下: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。 2. 点击“Docker”中的“项目模板”中的“添加”按钮。 3. 项目模板代码示例如下:将编译好的内容复制进来。 4. 在容器中创建容器,选择容器编排,填入模板和名称,确定。 5. 现实运行成功后,点击容器,可以看到运行的是两个服务。 6. 点击“wcandyaibot”后面的日志按钮,在弹出层中用提前预备好的微信进行扫码。此界面不会实时更新显示,需要手动刷新一下。点击“刷新日志”,如果看到“WeChat login success”,就成功将 Bot 接入微信中了。 7. 如果扫描二维码出现预料之外的情况,可以退回到容器配置处,重启容器服务,然后重新扫码登录。 8. 若想修改 COW 组件的配置,比如修改机器人回复的前缀或开启语音识别等,进入对应的编排模板的配置界面,点击模板编辑,修改对应的配置参数,点击保存,然后回到容器编排界面重新部署新的容器编排即可。 至此,完成 COW 组件的部署和微信号的绑定,就可以开始与机器人微信号进行语音聊天了。
2024-09-09
如何将扣子搭建的agent接入微信,成为一个有微信号的真人
以下是将扣子搭建的 agent 接入微信的一般步骤: 1. 在 Dify 的官网,可找到手把手教您将 Dify 应用接入微信生态的教程: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 2. 零成本、零代码搭建智能微信客服的实操步骤: 注意:目前需要企业认证,才可以进行接入微信客服。如果企业没有进行认证,则会在配置回调 URL 时报错:回调域名校验失败。另外,之前未进行企业认证就发布过微信客服的不受影响。 第一次设置成功后,后面再修改的页面操作: 到微信客服的客服账号,创建一个客服账号,复制客服账号名称,到 coze 的页面粘贴,点击保存。 保存后,在 coze 发布页面的发布平台的微信客服这里,显示“已配置”,剩下的就是勾选,点击发布。 发布成功后,接下来就是体验了,可以点击微信客服旁边的立即对话、复制 Bot 链接,会弹出来该微信客服的二维码,扫码即可立即体验。
2024-08-23