Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

智能体的感知能力

Answer

智能体的感知能力包括以下方面:

  • 听觉输入:能够利用 LLM 作为控制中心,调用现有的音频处理模型库来感知音频信息。通过音频频谱图的转换,将音频信号有效编码,实现对音频信息的理解和处理。
  • 文本输入:通过文本输入与人类交流,能理解用户文本中明确的内容以及隐含的信念、愿望和意图。利用强化学习技术,能感知并推断用户的偏好,实现个性化和准确的回应。此外,具有零样本学习能力,能处理全新任务,无需针对特定任务微调。
  • 视觉输入:为智能体提供丰富的环境信息,包括物体的属性、空间关系和场景布局。能通过生成图像的文本描述(图像标题)来理解图像内容。Transformer 模型的应用使其能直接对视觉信息进行编码和整合,提高视觉感知能力。通过在视觉编码器和 LLM 之间添加可学习的接口层,能更好地对齐视觉和语言信息。
  • 其他输入:除了文本、视觉和听觉输入,智能体还可能配备更丰富的感知模块,如触觉、嗅觉以及对环境温湿度的感知能力。指向指令的引入使得智能体能够通过用户的手势或光标与图像交互。此外,通过集成激光雷达、GPS、IMU 等硬件设备,智能体能够获得更全面的三维空间和运动感知能力。感知模块的设计初衷在于极大地拓展智能体的感知视野,融合多种模态,使其能够以更接近人类的方式感知和理解周围世界。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI-Agent系列(一):智能体起源探究

听觉输入方面,AI Agent能够利用LLMs作为控制中心,调用现有的音频处理模型库来感知音频信息。通过音频频谱图的转换,Agent能够将音频信号的有效编码,实现对音频信息的理解和处理。其他输入除了文本、视觉和听觉输入,AI Agent还可能配备更丰富的感知模块,如触觉、嗅觉以及对环境温湿度的感知能力。指向指令的引入使得Agent能够通过用户的手势或光标与图像交互。此外,通过集成激光雷达、GPS、IMU等硬件设备,Agent能够获得更全面的三维空间和运动感知能力。

AI-Agent系列(一):智能体起源探究

听觉输入方面,AI Agent能够利用LLMs作为控制中心,调用现有的音频处理模型库来感知音频信息。通过音频频谱图的转换,Agent能够将音频信号的有效编码,实现对音频信息的理解和处理。其他输入除了文本、视觉和听觉输入,AI Agent还可能配备更丰富的感知模块,如触觉、嗅觉以及对环境温湿度的感知能力。指向指令的引入使得Agent能够通过用户的手势或光标与图像交互。此外,通过集成激光雷达、GPS、IMU等硬件设备,Agent能够获得更全面的三维空间和运动感知能力。

AI-Agent系列(一):智能体起源探究

感知模块的设计初衷在于极大地拓展Agent的感知视野,不仅仅局限于文字的范畴,而是迈向一个更为丰富多元的领域。这个领域融合了文字、听觉和视觉等多种模态,使得Agent能够以一种更加接近人类的方式去感知和理解周围的世界。文本输入AI Agent通过文本输入与人类进行交流,能够理解用户文本中明确的内容以及隐含的信念、愿望和意图。利用强化学习技术,Agent能够感知并推断用户的偏好,实现个性化和准确的回应。此外,Agent展现出的零样本学习能力使其能够处理全新的任务,无需针对特定任务的微调。视觉输入视觉输入为AI Agent提供了丰富的环境信息,包括物体的属性、空间关系和场景布局。Agent可以通过生成图像的文本描述(图像标题)来理解图像内容。同时,Transformer模型的应用使得Agent能够直接对视觉信息进行编码和整合,提高了视觉感知能力。通过在视觉编码器和LLM之间添加可学习的接口层,Agent能够更好地对齐视觉和语言信息。听觉输入

Others are asking
态势感知、流量分析的AI开源项目有哪些
目前在态势感知和流量分析方面,较为知名的 AI 开源项目相对较少。但您可以通过以下途径去寻找和发现相关的开源项目: 1. 在开源代码托管平台如 GitHub 上,使用相关的关键词进行搜索。 2. 关注相关的技术论坛和社区,了解其他开发者的分享和推荐。 由于这方面的特定开源项目有限,建议您持续关注行业动态,以便及时获取新的信息。
2024-12-24
智能体感知决策执行
智能体是在现代计算机科学和人工智能领域中一个基础且重要的概念。 智能体的应用领域广泛,包括: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确智能体要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 具身智能是将机器学习算法适配至物理实体从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过多种模态与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。人形机器人是具身智能的代表产品,其三要素为本体、智能、环境,高度耦合是高级智能的基础。不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。具身智能体的行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,可泛化的通用执行能力是短板。LLM 为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2024-11-29
AI感知
AI 感知模块的设计初衷是极大地拓展 Agent 的感知视野,使其不限于文字范畴,而是融合文字、听觉和视觉等多种模态,更接近人类感知和理解世界的方式。 在文本输入方面,AI Agent 能通过文本与人类交流,理解用户文本中的明确内容及隐含的信念、愿望和意图。借助强化学习技术,它能感知并推断用户偏好,实现个性化和准确回应,还具有零样本学习能力,能处理新任务而无需特定任务微调。 在视觉输入方面,为 AI Agent 提供丰富环境信息,包括物体属性、空间关系和场景布局。Agent 能通过生成图像的文本描述来理解图像内容,Transformer 模型的应用使其能直接对视觉信息编码和整合,提高视觉感知能力。通过在视觉编码器和 LLM 间添加可学习接口层,能更好地对齐视觉和语言信息。 在听觉输入方面,暂未提供详细内容。
2024-08-28
人工智能历史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确性复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现卓越性能,过去十年中“人工智能”常被视为“神经网络”同义词。 在创建国际象棋计算机对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,搜索策略在对局结束时效果好,开始时因搜索空间大需通过学习人类对局改进,后续采用基于案例的推理,现代能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则将输入句子重新表述为问题,现代助手如 Cortana、Siri 或谷歌助手是混合系统,使用神经网络转换语音并识别意图,未来期待完整基于神经网络的模型独立处理对话,最近的 GPT 和 TuringNLG 系列神经网络取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机虽先进但仍遵循相同理念。但有些任务如根据照片判断年龄无法明确编程,因不知大脑完成任务的具体步骤,这种类型任务是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。
2024-12-25
人工智能历史图谱
人工智能的历史可以追溯到二十世纪中叶。 起初,符号推理流行,带来了专家系统等重要进展,但因提取知识复杂、成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今基于神经网络和强化学习,能从自身错误中学习,学习速度快于人类。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 等是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得成功。 近期神经网络研究在 2010 年左右有巨大发展,大型公共数据集出现,如 ImageNet 催生了相关挑战赛。2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率,此后神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 在过去几年,大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据,可先预训练再针对具体任务专门化。
2024-12-25
请描述具身智能的技术原理
具身智能是人工智能领域的一个子领域,其原理包括以下几个方面: 1. 强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。智能体的“身体”或“形态”很重要,它可以是物理形态如机器人的机械结构,也可以是虚拟形态如模拟环境中的虚拟角色。这些身体为智能体提供了与环境互动的手段,并影响其学习和发展。 2. 涉及多个学科,如机器人学、认知科学、神经科学和计算机视觉等。在机器人学中关注设计能自主行动和适应环境的机器人;在认知科学和神经科学中探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中致力于开发使智能体能够理解和解释视觉信息的算法。 3. 以“具身+智能”的范式,将机器学习算法适配至物理实体,与物理世界交互。例如将大模型嵌入到物理实体上,通过机器配备的传感器与人类交流。 4. 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),三者高度耦合是高级智能的基础。 5. 行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。 6. 在追求人工通用智能(AGI)的过程中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解所在环境并互动,产生具身行动。 具身智能在机器人领域,特别是服务机器人、工业自动化和辅助技术等方面有重要应用,也在虚拟现实、增强现实和游戏设计等领域广泛应用。但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂环境中有效学习、处理智能体与人类社会的伦理和安全问题等。
2024-12-25
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
有没有关于健身的人工智能,可以提供适合自己的锻炼计划
以下是一些关于健身的人工智能产品和案例,可为您提供适合自己的锻炼计划: 1. AI 健身是指利用人工智能技术来辅助或改善健身训练和健康管理。它能根据用户的健康状况、身体指标、运动目标和偏好,提供定制化的训练计划和建议。 2. 健身的 AI 工具: Keep:中国最大的健身平台,提供全面的健身解决方案。网址:https://keep.com/ Fiture:由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。网址:https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。网址:https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用 800 多万条文本数据和 ChatGPT 实时提供指导。网址:https://planfit.ai/ 3. 案例: 马多克斯先生利用 ChatGPT 制定锻炼计划,例如让其总结锻炼笔记并提出建议。 森博斯基女士让 ChatGPT 写无麸质饮食计划。 此外,还有一些其他专门为协助特定任务而设计的 AI 驱动工具,如可提升沟通能力。
2024-12-24
有没有这些生成式人工智能的url
以下是一些与生成式人工智能相关的 URL: 生成式人工智能简介的视频学习地址: https://youtu.be/G2fqAlgmoPo 中文版本推荐: 生成式人工智能如何改变创意工作相关的框架:NVIDIA 的 2024 年人工智能现状报告链接: 英文解读链接:
2024-12-24
可灵和即梦哪个生成视频的能力更强
目前难以直接明确可灵和即梦哪个生成视频的能力更强。 Google DeepMind 和 OpenAI 展示了强大的文本到视频扩散模型预览,但访问受限且技术细节披露不多。Meta 更进一步,将音频加入其 Movie Gen 模型。 在 2024 年,国内涌现出一系列 AI 生成视频工具,如可灵、即梦、智谱清影等,生成结果甚至远超国外。 即梦是剪映旗下的,生成 3 秒视频,动作幅度有很大升级,有最新的 S 模型和 P 模型。可灵支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。 在图生视频方面,市面上主要的工具包括可灵、即梦、Luma,核心方法是穷举和不断调整 prompt 来设计人物动作、辅助镜头运镜等。
2024-12-21
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
新闻资讯场景可以和现在的ai能力结合出哪些新的应用场景
新闻资讯场景与当前 AI 能力结合可以产生以下新的应用场景: 1. 文本生成和内容创作:生成连贯、有逻辑的新闻报道、评论等文本内容。 2. 聊天机器人和虚拟助手:为用户提供新闻相关的咨询和服务。 3. 编程和代码辅助:辅助新闻资讯平台的开发和优化。 4. 翻译和跨语言通信:促进不同语言背景的用户获取新闻资讯。 5. 情感分析和意见挖掘:分析新闻评论中的用户情感和观点,为新闻报道提供参考。 6. 教育和学习辅助:创建与新闻相关的学习材料,辅助新闻知识的学习。 7. 图像和视频生成:根据新闻内容生成相应的图像和视频。 8. 游戏开发和互动体验:将新闻元素融入游戏,增强用户的沉浸式体验。 9. 医疗和健康咨询:提供与健康新闻相关的初步建议和信息查询服务。 10. 法律和合规咨询:帮助解读与新闻相关的法律文件和合规问题。 在专业创作者方面,AI 生成能够为新闻类作品赋予独特风格和想象力,为创作者提供灵感,降低后期制作的门槛和成本。目前该应用主要集中在新闻相关的音乐 MV、短篇电影、动漫等方向。 对于自媒体、非专业创作者,AI 可以帮助解决视频剪辑痛点,如为科技、财经、资讯类重脚本内容的视频生成分镜、视频,降低视频素材制作门槛,还能将文章高效转成视频内容,以及解决同一素材在不同平台分发的成本问题。 对于企业客户,AI 视频生成可以为没有足够视频制作资金的小企业、非盈利机构大幅缩减新闻相关视频的制作成本。
2024-12-17
有什么能应用于资讯写作上的ai能力,比如标题改写,新闻图片再生成等
以下是一些能应用于资讯写作的 AI 能力和相关工具: AI 能力: 1. 标题改写:通过自然语言处理技术,对原始标题进行优化和创新,使其更具吸引力和准确性。 2. 新闻图片再生成:利用图像生成技术,根据新闻内容或相关描述重新生成图片。 AI 工具: 1. Copy.ai:功能强大的 AI 写作助手,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等内容。 2. Writesonic:专注于写作的 AI 工具,提供新闻稿件生成、标题生成、摘要提取等功能,其智能算法能根据用户信息生成高质量新闻内容。 3. Jasper AI:人工智能写作助手,虽主打博客和营销文案,但也可用于生成新闻类内容,写作质量较高,支持多种语言。 此外,大模型在资讯写作方面也有广泛的应用场景,例如: 1. 文本生成和内容创作:生成连贯、有逻辑的文本,用于撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:开发能够与人类进行自然对话的工具,提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:用于代码自动补全、bug 修复和代码解释,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体、评论和反馈中的文本,识别用户情感和观点,为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应的图像,未来可能扩展到视频内容生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 需要注意的是,随着大模型的普及,要关注其在隐私、安全和伦理方面的挑战。同时,对于 AI 生成的内容,应仔细甄别。
2024-12-17