直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

用mermaid可以生成流程结构图的ai

回答

以下是关于用 ChatGPT 结合 Mermaid 生成流程结构图的相关内容:

  • 开发方面:可以利用 ChatGPT 来生成各种流程图、时序图等,效果能秒杀 VISIO。生成流程包括确定制作目标、通过自然语法描述逻辑、在线校验测试是否成功。在线测试地址为:Mermaid
  • 生成流程图的方式:有可视化拖拽和语法渲染成图形两种。可视化拖拽的代表产品有processon(web 工具)、visio(本地软件),优点是直观,缺点是需要花时间在布局上。语法渲染成图形的代表语法是Mermaid,优点是只用关注逻辑,文本即图形,方便直接嵌入在 markdown 文件中,具有多样性,不同渲染引擎可渲染成多种样式;缺点是有点抽象。
  • 应用场景示例:如在自动驾驶中,对于 NPC 车辆切入 ego 车辆车道的场景,可按照 BORE 方法,阐述背景、定义任务目标和关键结果,让 ChatGPT 生成相应的 mermaid 时序图代码。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

开发:ChatGPT+程序员10倍提效

好吧,那我们用ChatGPT来帮忙,我们通过自然语法转成[Mermaid](https://mermaid.live/edit#pako:eNpVjk2Lg0AMhv9KyGkL9Q94WGh1t5fCFurN6SFo7AztfDBGpKj_fcd62c0pvM_zhkzY-JYxx-7px0ZTFKhK5SDNoS50NL1Y6m-QZZ_ziQWsd_ya4fhx8tBrH4Jx993mH1cJium8agyijXssGyre_R_HM5T1mYL4cPtLqtHP8FWbi07n_xMdObW-647yjrKGIhQU3wru0XK0ZNr0_rQmCkWzZYV5WlvuaHiKQuWWpNIg_vpyDeYSB97jEFoSLg3dI9ktXH4B_cJWqw)图形语法。生成流程如下:一、确定制作目标下面两个图的逻辑是我工作场景中遇到的,分别是时序图和流程图。二、通过自然语法描述逻辑用过自然语言描述出来生成Mermaid图形语法。三、在线校验测试是否成功最后测试发现非常完美在线测试地址:[Mermaid](https://mermaid.live/edit#pako:eNpVjk2Lg0AMhv9KyGkL9Q94WGh1t5fCFurN6SFo7AztfDBGpKj_fcd62c0pvM_zhkzY-JYxx-7px0ZTFKhK5SDNoS50NL1Y6m-QZZ_ziQWsd_ya4fhx8tBrH4Jx993mH1cJium8agyijXssGyre_R_HM5T1mYL4cPtLqtHP8FWbi07n_xMdObW-647yjrKGIhQU3wru0XK0ZNr0_rQmCkWzZYV5WlvuaHiKQuWWpNIg_vpyDeYSB97jEFoSLg3dI9ktXH4B_cJWqw)

开发:ChatGPT+程序员10倍提效

副标题:谁还用VISIO?ChatGPT生成流程图、时序图,效果震撼!为什么要用ChatGPT生成流程图、时序图?生成流程图有两种方式:1.可视化拖拽:代表产品有:[processon](https://processon.com/)(web工具),visio(本地软件)2.优点:直观3.缺点:需要花时间在布局上4.语法渲染成图形,代表语法:[Mermaid](https://mermaid.live/edit#pako:eNpVjk2Lg0AMhv9KyGkL9Q94WGh1t5fCFurN6SFo7AztfDBGpKj_fcd62c0pvM_zhkzY-JYxx-7px0ZTFKhK5SDNoS50NL1Y6m-QZZ_ziQWsd_ya4fhx8tBrH4Jx993mH1cJium8agyijXssGyre_R_HM5T1mYL4cPtLqtHP8FWbi07n_xMdObW-647yjrKGIhQU3wru0XK0ZNr0_rQmCkWzZYV5WlvuaHiKQuWWpNIg_vpyDeYSB97jEFoSLg3dI9ktXH4B_cJWqw)5.优点:6.【只用关注逻辑】文本即图形,方便直接嵌入在markdown文件中。比如在用tyora,markdown写文档时。7.【多样性】不同渲染引擎可渲染成多种样式8.缺点:有点抽象我个人比较倾向于语法转图形的方式。所以只要解决语法抽象写起来麻烦的问题就行。

陈财猫:BORE框架的产生过程,一个自动驾驶产品经理的ChatGPT方法论

1.NPC车辆在相邻车道以速度V_npc靠近ego车辆。2.当水平距离d_npc达到阈值d_critical时,NPC车辆开始切入操作:a.NPC车辆向内侧车道转向,同时NPC车辆的前轮触碰到ego车道的车道线,并压在车道线上。b.NPC车辆逐渐进入ego车道,直到完全进入,并摆正位置。3.在这个过程中,ego车辆应该进行以下反应:a.自动驾驶系统应该能够检测到NPC车辆的切入行为,并识别它的行为意图。b.如果检测到了NPC车辆的切入行为,自动驾驶系统应该能够进行迅速反应,采取避让措施以确保安全行驶。c.具体的避让措施可以包括刹车、加速、转向等,以确保避免与NPC车辆发生碰撞。4.当NPC车辆完成切入操作后,NPC车辆的速度会逐渐回到原始速度V_npc,并行驶在ego的前方。"我们来拆解这段prompt,仍然是上文中提到的BORE方法:1.阐述背景:我们提示了ChatGPT对话中所说的mermaid是代码转图表工具,并在“内容”中提供了需要他转换成时序图的文字。2.定义任务目标:请阅读下面的内容,写一份可以生成mermaid时序图的代码。3.定义关键结果:时序图要与我提供的内容保持完全一致。

其他人在问
检查文章是否是ai写的,有什么软件
以下是一些可以检查文章是否由 AI 写的软件: 1. Writer.com:提供免费的 AI 内容检测工具,使用时将文本粘贴到在线工具中点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 3. Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中,系统会分析并提供结果。 4. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析并提供详细报告。 5. Copyscape:主要用于检测网络剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 6. Grammarly:提供语法检查和剽窃检测功能,将文本粘贴到编辑器中选择剽窃检测功能,系统提供分析报告。 7. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究。上传文档或输入文本,系统分析并生成报告。 8. Originality.AI:专门设计用于检测 AI 生成内容,上传文档或输入文本,系统提供详细报告。 以下是一些 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,帮助改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-22
我能不能用AI做一个实时交流的社群
以下是关于您能否用 AI 做一个实时交流社群的相关信息: AI 音乐方面: 存在 AI 音乐共建者的社群。 使用方式:文档中可贴喜欢的音乐或投稿教程,定期组织音乐交流会,社群中可实时交流音乐相关创作作品和经验分享。 加入条件:至少有一首以上的 AI 音乐作品,添加 AAAAAAAJ 备注音乐。 近期活动:「在线音乐会」网友出题,现场生音乐(时间待定);「Reaction」收集 AI 音乐,大家一起欣赏,记录听到意想不到的好听的歌的反应(时间待定)。 有趣的音乐可贴在文档下方,持续收集中。 Inworld AI 方面: 使 NPC 能够自我学习和适应,具有情绪智能。 特点和功能: 实时语音:使用内置语音设置进行最小延迟,可配置角色的性别、年龄、音调和说话速度,或使用第三方服务创建自定义和克隆语音。 “Contextual Mesh”功能:定制 AI 非玩家角色(NPC)的行为和知识。 可配置的安全性:可配置 NPC 对话方式,适应不同年龄级别游戏。 知识:输入“个人知识”控制角色应知道或不应知道的信息,使用“共享知识”定义多个角色拥有的知识。 玩家档案:收集玩家信息,让 NPC 在互动时考虑。 关系:配置角色关系流动性,创建不同关系的角色。 第四堵墙:确保角色只从其世界中的知识获取信息,创建更沉浸的体验。 可与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,帮助品牌创建交互性强的 AI 角色,无需编码。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-22
AI英文全称
AI 的英文全称是 Artificial Intelligence,意思是人工智能。它是指让计算机或机器能像人类一样思考和学习的技术。在不同的应用场景中,AI 有着丰富的表现形式,比如聊天机器人、推理者、智能体、创新者和组织等。同时,在 AI 领域还有众多的术语,如 BlackBox Attack(黑盒攻击)、Bonding Environments(成键环境)、Bonferroni Correction(邦弗朗尼校正)等。
2024-12-22
ai音乐创作管线
AI 音乐创作管线包括以下几个方面: 1. ByteComposer:由字节跳动人工智能实验室开发,利用大型语言模型(LLM),通过概念分析、草稿创作、自我评估与修改、审美选择四个关键步骤生成旋律。其核心模块包括专家模块、生成器模块、投票器模块以及记忆模块,通过精心设计的提示激发 LLM 的音乐理论知识,并通过交叉验证优化提示设计。在实验中证明了其在音乐创作方面的有效性,达到了初级作曲家的水平,为用户提供了直观、可控且富有创造性的音乐创作平台。 2. 《We Are The One》的融合工作流:呼应了 AI 技术在音乐创作中不可或缺的愿景,核心是介绍使用 AI 音乐平台 UDIO.com 进行音乐创作的技术分享,以歌曲《We Are the One》的制作过程为例,展示如何结合 AI 与传统音频处理手段,打造以 AI 为主导的音乐制作工作流。 3. 自定义前奏的工作流:Suno 和 Udio 推出上传音频文件生成音乐的功能,可精确控制速度、旋律、配器、合成等。节省的点数可用于多 Roll 与流派、心情、场景相关的曲子并存好旋律素材,也可用于 roll 更多细节调整部分以提升作品品质。通过简单例子演示工作流。
2024-12-22
你好,你的知识库管理采用的大模型流程是什么,请勇mermaid说明一些
以下是关于大模型流程的详细说明: RAG(Retrieval Augmented Generation,检索增强生成)技术应用于利用大模型能力搭建知识库,其流程主要包括以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割(Splitting):文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出(Output):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 从用户提出问题开始,还经历了以下流程: 1. 用户问题的理解。 2. 根据用户问题进行路由。 3. 进行初步的检索。 4. 对初步检索的结果进行重排序。 5. 将重排序后的结果和用户的查询意图组合成上下文输入给大模型。 6. 大模型通过指定的提示词生成输出结果。 需要注意的是,重排序的结果通常不会都被用作大模型的上下文,因为大模型的上下文有限制。可以设置一个阈值进行截断,比如只使用前 3 5 个文档;也可以设置一个相关性分数的阈值,只取相关性分数大于某个值的文档。一些先进的 RAG 系统会对选中的文档进行摘要或压缩,以在有限的空间内包含更多相关信息。 在大模型输出结果后还有后置处理,可能包括敏感内容检测和移除、格式化输出等。 LLM 的工作原理可以这样理解:以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对这句话加入更多的信息来补充,比如补充“狮子头是一道菜”“今天是星期六”等等。这些补充信息,会作为输入给到下一个 Attention 层进行补充。最终层与层之间,哪些信息需要补充,哪些信息需要保留,哪些信息传递,均由模型自主学习完成。总结起来就是大模型以词向量和 Transformer 的模型学习了海量的知识,把知识作为向量空间中的一种关系网进行存储,并在接受输入时,通过向量空间中的一系列匹配进行输出。这就像人脑在阅读学习的过程,记忆的不是点状的知识,而是网状的经验。
2024-10-15
生成逻辑图或结构图的工具
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-11-03
能帮我找一些AI agent + RPA 的例子和结构图或者流程图吗?
AI代理(AI Agents)与机器人流程自动化(RPA)的结合在现代业务流程自动化中扮演着越来越重要的角色。这种结合不仅可以显著提高工作效率,还可以减少人为错误,提高数据处理的准确性。以下是一些具体的例子和结构图或流程图的描述,帮助你了解如何将AI代理与RPA集成在一起。 示例 1: 客户支持自动化 应用场景:利用AI和RPA自动处理客户服务请求。 结构图描述: 1. 客户提交请求:客户通过网站或应用程序提交支持请求。 2. AI代理(自然语言处理): AI代理分析客户的自然语言输入,识别请求的类型和重要信息。 3. RPA机器人: 根据AI代理的分析结果,RPA机器人执行相关的后台任务,如查询数据库、更新客户信息、生成支持票据等。 4. 反馈给客户:AI代理生成响应信息并反馈给客户。 流程图: ```plaintext 客户提交请求 > AI代理分析请求 > RPA执行任务 > AI代理生成反馈 > 反馈给客户 ``` 示例 2: 自动发票处理 应用场景:使用AI和RPA自动处理供应商发票。 结构图描述: 1. 接收发票:通过电子邮件或扫描仪接收发票。 2. AI代理(OCR和NLP): 使用光学字符识别(OCR)技术提取发票上的文本。 自然语言处理(NLP)分析和分类发票信息。 3. RPA机器人: 验证提取的数据,检查与采购订单的匹配。 更新财务系统,记录发票信息。 4. 生成报告:生成并发送处理结果报告。 流程图: ```plaintext 接收发票 > AI代理OCR识别 > NLP分析和分类 > RPA验证和记录 > 生成报告 ``` 示例 3: 人力资源招聘流程自动化 应用场景:自动化处理求职申请和筛选候选人。 结构图描述: 1. 接收申请:通过招聘网站或电子邮件接收求职申请。 2. AI代理(简历解析和匹配): 解析求职者的简历,提取技能和经验。 与职位要求进行匹配,筛选出符合条件的候选人。 3. RPA机器人: 安排面试时间,发送面试邀请。 更新招聘管理系统。 4. 反馈结果:通知应聘者筛选结果。 流程图: ```plaintext 接收申请 > AI代理解析简历 > 匹配职位要求 > RPA安排面试 > 通知结果 ``` 示例 4: 自动化市场营销活动 应用场景:自动化管理和执行市场营销活动。 结构图描述: 1. 营销计划:制定市场营销活动计划。 2. AI代理(数据分析和预测): 分析市场数据和客户行为,预测活动效果。 3. RPA机器人: 执行营销活动,如发送电子邮件、发布社交媒体帖子。 跟踪和记录活动效果。 4. 生成报告:生成活动效果报告,提供优化建议。 流程图: ```plaintext 制定营销计划 > AI代理数据分析 > 预测效果 > RPA执行活动 > 跟踪记录 > 生成报告 ``` 示例 5: 金融服务自动化 应用场景:自动化处理贷款申请和审批。 结构图描述: 1. 接收贷款申请:通过在线表格或银行系统接收申请。 2. AI代理(信用评分和风险评估): 分析申请人的信用记录和财务状况,计算信用评分。 进行风险评估,判断贷款批准的可能性。 3. RPA机器人: 自动验证申请信息。 更新贷款管理系统。 生成审批或拒绝通知。 4. 反馈结果:通知申请人结果。 流程图: ```plaintext 接收贷款申请 > AI代理信用评分 > 风险评估 > RPA验证信息 > 更新系统 > 通知结果 ``` 这些示例展示了AI代理和RPA在各种业务流程中的结合应用,提供了提高效率和减少错误的有效方法。通过这种集成,企业可以更好地管理复杂的业务流程,提升整体运营效率。
2024-05-28
我需要在coze创建一个符合我需求的智能体(带工作流)全流程,要求流程完整(从创建之前的工作)
以下是在 Coze 创建一个符合您需求的智能体(带工作流)的全流程: 1. 打开 Coze 官网 https://www.coze.cn/home ,注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入 bot 的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定 Bot 的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置:插件可扩展 Bot 的专业能力,如计算器、日历等工具;工作流可设置固定的处理流程和业务逻辑;图像流可处理和生成图像相关功能;触发器可设置自动化响应条件。 知识库管理:文本可存储文字类知识材料,表格可存储结构化数据,照片可作为图像素材库。 记忆系统:变量可存储对话过程中的临时信息,数据库可管理持久化的结构化数据,长期记忆可保存重要的历史对话信息,文件盒子可管理各类文档资料。 交互优化(底部区域):开场白可设置初次对话的问候语,用户问题建议可配置智能推荐的后续问题,快捷指令可设置常用功能的快速访问,背景图片可自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试 Bot 的各项功能,调试响应效果,优化交互体验。 4. 创建图像工作流: 图像流分类:图像流分为智能生成、智能编辑、基础编辑三类。Coze 的图像流很像 ComfyUI,但是比 ComfyUI 更普世化,更简单易上手。 空间风格化插件:空间风格化插件有个参数,image_url 就是毛坯房的图片地址;Strength 提示词强度,就是提示词对效果图的影响度;Style 生成效果的风格,比如新中式、日式、美式、欧式、法式等等。 工作流流程:按照构架配置工作流,调试工作流,毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点解析:开始节点就对应配置三项内容,提示词优化。 5. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求,自定义工作流信息。 工作流全局流程设置: 开始节点:输入 url,由于希望收到用户输入的待收藏 url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的 url,则交由外层 bot 的大模型判断)。 变量节点:引入 bot 变量中保存的飞书多维表格地址,为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在 bot 的变量中,并在工作流运行时进行引用。 插件节点:获取页面内容,这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为 60000。 6. 人设和回复逻辑:技能 1 中 3 项中的编译数字来源,然后点击右上角发布,机器人就可以不知疲倦地给您出图了。
2024-12-21
帮我梳理coze创建一个符合我需求的带工作流的智能体全流程,要求流程完整
以下是用 Coze 创建带工作流的智能体的全流程: 1. 打开 Coze 官网(https://www.coze.cn/home)。 2. 创建图像工作流: 图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试效果,可使用调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,包括提示词优化。 人设和回复逻辑中,技能 1 中 3 项中的编译数字来源,然后点击右上角发布。 3. 搭建整理入库工作流: 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 3.1 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 3.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,将链接存储在 bot 的变量中,并在工作流运行时进行引用。 3.3 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2024-12-21
帮我梳理coze创建一个带工作流的智能体的全流程
以下是用 Coze 创建带工作流的智能体的全流程: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 打开 Coze 官网 https://www.coze.cn/home 。 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行智能体,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 在创建图像工作流方面: 创建图像工作流,图像流分为智能生成、智能编辑、基础编辑三类。 空间风格化插件有相关参数,如 image_url 是毛坯房的图片地址;Strength 是提示词强度,影响效果图;Style 是生成效果的风格,如新中式、日式、美式、欧式、法式等;user_prompt 是用户输入的 Promot 提示词。 按照构架配置工作流,调试工作流效果,调试工作流毛坯房测试用例:https://tgi1.jia.com/129/589/29589741.jpg 。 开始节点对应配置三项内容,进行提示词优化。 配置好人设和回复逻辑,然后点击右上角发布,机器人就可以出图。
2024-12-21
本地化搭建问答机器人流程
本地化搭建问答机器人的流程如下: 1. 加载所需的库和模块:包括用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 2. 从订阅源获取内容:通过函数从指定的 RSS 订阅 url 提取内容,如需接收多个 url 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3(从 hf 下载好模型后假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 4. 推荐 RSSHub 项目:可将关注的信息汇聚在同一平台,一旦有更新能在各种终端收到提醒。其为各种网站生成 RSS 源,大部分社交媒体、传统媒体和金融媒体都能配合订阅。 5. 流程拆解: 创建 Python 虚拟环境,并安装相关库,如 ollama(0.1.8)、langchain(0.1.14)、faisscpu(1.8.0,有 gpu 则安装 gpu 版本)、gradio(4.25.0)、feedparser(6.0.11)、sentencetransformers(2.6.1)、lxml(5.2.1)。 6. 了解 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装 ollama,访问 https://ollama.com/download/ 下载安装。安装完确保 ollama 后台服务已启动(在 mac 上启动应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认,未下载模型时正常显示空,可通过 ollama 命令下载模型。
2024-12-21
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19