Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI中什么是difussion?

Answer

在AI图像生成中,"diffusion"(扩散)通常指的是一类生成模型,称为扩散模型(Diffusion Models)。这类模型通过逐步引入噪声到数据中,并训练网络学习逆向过程来生成数据。扩散模型在图像生成领域中应用广泛,特别是在文本到图像的生成任务中表现出色。

扩散模型的工作原理可以概括为以下几个步骤:

  1. 正向扩散过程:向图像逐渐添加高斯噪声,直到图像完全无法识别,这个过程可以被形式化为顺序扩散马尔可夫链。
  2. 潜空间表示:将图像压缩到低维的潜在空间(Latent Space)中,以减少计算量和提高生成速度。
  3. 学习逆向过程:训练一个神经网络来预测每一步中噪声的分布,并逐步去除噪声,从而恢复出清晰的图像。
  4. 文本到图像的生成:结合文本编码器和图像解码器,根据文本描述生成相应的图像。

扩散模型的关键优势在于其生成高质量的图像的能力,以及相比其他生成模型(如GANs)在计算效率和稳定性上的优势。Stable Diffusion等模型就是基于扩散模型的文本到图像生成工具,它们能够根据文本提示生成逼真的图像。

扩散模型的逆向过程,即从噪声中恢复图像的过程,可以类比为雕刻,AI逐步去除不必要的部分,最终得到清晰的图像。这个过程可以逐步进行,也可以一次性完成,取决于模型的具体实现和采样算法。

总的来说,扩散模型为AI图像生成提供了一种强大的技术手段,能够在多种场景下生成高质量的图像。

Content generated by AI large model, please carefully verify (powered by aily)

References

🌈通往AGI之路-分享会

Diffusion是另一个重要的AI技术,让我们了解其原理。

AIGC常见名词解释(字典篇)

AIGC:AI generated content,又称为生成式AI,意为人工智能生成内容。例如AI文本续写,文字转图像的AI图、AI主持人等,都属于AIGC的应用。类似的名词缩写还有UGC(普通用户生产),PGC(专业用户生产)等。能进行AIGC的产品项目也很多,能进行AIGC的媒介也很多包括且不限于语言文字类:OpenAI的GPT,Google的Bard,百度的文心一言,还有一种国内大佬下场要做的的LLM都是语言类的。语音声音类:Google的WaveNet,微软的Deep Nerual Network,百度的DeepSpeech等,还有合成AI孙燕姿大火的开源模型Sovits。图片美术类:早期有GEN等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的Midjourney,先驱者谷歌的Disco Diffusion,一直在排队测试的OpenAI的Dalle·2,以及stability ai和runaway共同推出的Stable Diffusion...

XiaoHu.AI日报

🔔Xiaohu.AI日报「2月24日」 ✨✨✨✨✨✨✨✨1⃣️📱AllenTom/diffusion-client:一个为Android设计的Stable-Diffusion客户端。支持图像生成、编辑、修复、换脸等功能。支持多种模型,如Lora、SDXL、Civita。功能包括文本到图像、图像到图像、图像修复等。🔗 https://github.com/AllenTom/diffusion-client?tab=readme-ov-file2⃣️🔍可视化的维基百科:快速自我组织整理的搜索信息。类似思维导图结构,方便快速获取信息。🔗 https://explorer.globe.engineer🔗 https://x.com/xiaohuggg/status/1761329682635448623?s=203⃣️🛠️SUPIR:图像错误或损坏部分的修复工具。支持文本提示智能修复。提供在线体验。🔗 https://github.com/chenxwh/SUPIR🔗 https://replicate.com/cjwbw/supir🔗 https://x.com/xiaohuggg/status/1761273943791669723?s=204⃣️👁️YOLOv9:实时对象检测,准确快速识别图像或视频中的多个对象。模型轻量化,高准确率和效率。改进架构和训练方法,提高检测准确性。

Others are asking
AI生成PPT
以下是关于 AI 生成 PPT 的相关内容: 卓 sir 的制作流程:先让 GPT4 生成 PPT 大纲,然后将大纲导入 WPS 启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。其中,生成符合要求的大纲最费时间。 市面上大多数 AI 生成 PPT 的思路:AI 生成 PPT 大纲、手动优化大纲、导入工具生成 PPT、优化整体结构。 相关推荐:gamma、AIPPT、islide AI 等产品,其中 gamma 被认为在审美方面表现较好。 扩展阅读:《AI 生成 PPT 工具红黑榜,这三款千万别用》《AI+PPT 等效率工具的研报》 您可以根据自己的需求和喜好选择合适的方法和工具来生成 PPT。
2025-02-26
文生营销图AI
以下是关于文生营销图 AI 的相关教程: Liblibai 简易上手教程: 1. 定主题:确定您需要生成的图片的主题、风格和要表达的信息。 2. 选择 Checkpoint:根据主题选择内容贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设为 2。 6. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 7. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 8. 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 9. 迭代步数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 10. 尺寸:根据喜好和需求选择。 11. 生成批次:默认 1 批。 Tusiart 简易上手教程: 1. 定主题:确定图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的 Checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:用于控制图片中特定的图像,如人物姿态等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 那一串。 7. Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,无需语法和长句。 8. 负向提示词 Negative Prompt:用英文写要避免的内容,同样是单词和短语组合,用英文半角逗号隔开。 9. 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,在 30 40 之间,多了意义不大且慢,少了效果差。 11. 尺寸:根据喜好和需求选择。 关于【SD】文生图提示词: 1. 避免使用太大的数值,如 1920x1080,可能导致奇怪构图,可使用高清修复放大图像倍率,记住高宽比主要控制画面比例。 2. 调整好参数后生成图片,若质感不足,可添加标准化提示词,如:,绘图,画笔等,让画面更趋近于固定标准。
2025-02-26
AI LOGO工具
以下是一些生成 Logo 的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器利用 AI 技术创建个性化设计,用户可选择元素和风格。 4. LogoMakr:提供简单易用的设计工具,用户能拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 这些 AI 产品让无设计背景的用户也能轻松创建专业 Logo。使用时,用户可根据品牌理念和视觉偏好,通过简单交互获得系列方案,并进一步定制优化至满意。 此外,您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。 在第六期“一起做个 LOGO 吧”活动中,活动时间为 2024 年 6 月 9 日至 2024 年 6 月 16 日。活动目标包括探索制作 LOGO 方法、创造独特生成技巧、制作代表学习成果的作品。参与方式为使用 SD 等 AI 工具出图并将作品发送至 SD 学社微信群。会创建在线文档收集作品,6 月 16 日举行群内投票选出前三名,注意事项包括确保设计原创、允许作品公开展示以及在截止日期前提交。 在 AI 制作游戏 PV《追光者》中,故事背景创作阶段结合 chatGPT 发散制作游戏世界观,引导 ChatGPT 用分镜形式描述,使用 new bing 共创细致的故事分镜。生图阶段利用 ChatGPt 制作 midjourney 提示词工具,进入 midjourney 绘图包括制作 logo。还统一了 MJ 风格描述词,建立 AI 描述词模板,运用 midjourney 尝试制作不同风格 logo,最后用 PS 合成。
2025-02-26
我想知道ai学习路径
以下是为您提供的 AI 学习路径: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,比如掌握提示词的技巧,这上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,知识库中也有很多实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验。 六、技术研究方向 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 七、应用方向 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 希望以上内容对您有所帮助。
2025-02-26
AI 自动化和工作流编排有什么好的工具和方案
以下是一些关于 AI 自动化和工作流编排的工具和方案: 1. RPA 软件:很早就出现在工作流编排领域,目标是使基于桌面的业务流程和工作流程实现自动化,现在越来越多的 RPA 软件带上了 LLM。 2. ComfyUI:将开源绘画模型 Stable Diffusion 进行工作流化操作模式,用户在流程编辑器中配置 pipeline,通过不同节点和连线完成模型操作和图片生成,其 DSL 配置文件支持导出导入,提高了流程的可复用性,降低了时间成本。 3. Dify.AI:工作流设计语言与 ComfyUI 有相似之处,定义了一套标准化的 DSL 语言,方便使用导入导出功能进行工作流复用。 4. Large Action Model:采用“通过演示进行模仿”的技术,检查人们与界面的互动并模仿操作,从用户提供的示例中学习。 5. Auto GPT/Agent/Baby AGI:基于 GPT4 语言模型的开源应用程序,用户输入目标后可自主执行任务、递归地开发和调试代码。能用于自动化任务、创建自主的 AI 代理、完成各种任务等,访问地址为: 。 此外,在工作流编排中还涉及到一些概念和技术: 1. 短期记忆和长期记忆:短期记忆将所有的上下文学习看成是利用模型的短期记忆来学习;长期记忆通过外部的向量存储和快速检索来存储和召回信息。 2. 工具:学会调用外部不同类型 API 来获取模型缺少的额外信息、代码执行能力、访问专有信息源等。 3. 动作:大模型结合问句、上下文的规划、各类工具,最终决策出需要执行的动作。 4. Agentic Workflow 可以从提升效率、提高质量、节省时间的角度思考,通过将复杂任务分解成较小步骤,融入更多人类参与到流程中的规划与定义,减少对 Prompt Engineering 和模型推理能力的依赖,提高 LLM 应用面向复杂任务的性能。 但需要注意的是,Agentic Workflow 虽然美好,但使用的用户目前较少,可能是出现周期、工作流使用的上手难度等因素导致,并且在复杂流程上的开发并不是那么稳定可靠。
2025-02-26
AI教程
以下为为您提供的 AI 教程相关内容: 1. 五步学会用 AI 制作动画视频播客:五个步骤教您从零到一制作动画版视频播客,适合有一定技术基础的朋友,轻松上手创作动画视频!相关链接: 2. Poe AI 平台:这是一个支持与多个智能 AI 机器人(如 GPT4 等)进行实时在线交流的聊天网站。注册账号后可免费使用,部分功能需付费订阅。不同 AI 机器人有不同特点,可按需选择。官网地址是:https://poe.com/ ,可在官网帮助中心找到具体教程。
2025-02-26
stable difussion 可以生成视频吗
Stable Diffusion 中的 Stable Video Diffusion 可以生成视频。 Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,它是一种用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。该模型不仅支持文本、图像生成视频,还支持多视角渲染和帧插入提升视频帧率。用户可以调整模型选择、视频尺寸、帧率及镜头移动距离等参数。 当时,Stable Video Diffusion 开源了两种图生视频的模型,一种是能够生成 14 帧的 SVD,另一种则是可以生成 25 帧的 SVDXL。在以基础形式发布时,通过外部评估,发现这些模型超越了人类偏好研究中领先的封闭模型。 其主要贡献包括:提出一个系统的数据管理工作流程,将大量未经管理的视频集合转变为用于生成视频建模的高质量数据集;使用此工作流程,训练最先进的文本到视频和图像到视频模型,其性能优于所有现有模型;通过进行特定领域的实验来探索 SVD 模型中运动和 3D 理解的强先验。具体来说,预训练的视频扩散模型可以转变为强大的多视图生成器,这可能有助于克服 3D 领域中的数据稀缺问题。 Stability AI 还推出了基于 Discord 的媒体生成和编辑工具,其中的视频功能基于初始图像使用 Stable Video Diffusion 生成短视频。 在云部署实战方面,关于上面的两个模型依赖权重可在百度网盘获取,关注公众号「魔方 AI 空间」,回复【SVD】即可。手动下载下来后,分别放到指定路径。在准备工作做好后,再次运行,复制 url 到浏览器中打开。点击下拉箭头,可以选择不同模型版本,再勾选 load Model。SVD 本地部署目前仅支持图生视频,图片来源可以选择 AI 绘画工具如 Midjourney、Stable Diffusion 等生成图片,然后再上传到 SVD 进行视频的生成,同时可以调左侧的一些参数,控制视频的生成效果。视频生成的保存路径在 outputs 下。 但需要注意的是,SVD 模型对硬件要求较高,对于缺乏硬件资源的普通用户有一定限制,同时其支持的图片尺寸较小,限制了它的应用场景。尽管 SVD 与其他商用产品在帧率、分辨率、内容控制、风格选择和视频生成时长等方面存在差距,但其开源属性和对大规模数据的有效利用构成了其独特优势。
2025-02-25
stable difussion controlnet
Stable Diffusion 相关信息: Stable Diffusion 3.5 已发布,我们对安全高度重视并采取措施防止不良行为者滥用。10 月 29 日将公开发布 Stable Diffusion 3.5 Medium,ControlNets 也将推出,为各种专业用例提供先进的控制功能。 ControlNet 允许通过线稿、动作识别、深度信息等对生成的图像进行控制。使用前需确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步。基本流程包括点击 Enable 启用该项 ControlNet,选择合适的 Preprocessor、调整 Weight 和 Guidance strength 等,还有一些特殊设置如 Invert Input Color、RGB to BGR、Low VRAM、Guess Mode 等。 用 Stable Diffusion 装饰二维码的方法:首先使用 img2img 生成类似于 QR 码的图像,在采样步骤中打开 ControlNet 以将 QR 码压印到图像上,在采样步骤接近尾声时关闭 ControlNet 以提高图像的一致性。具体步骤包括选择检查点模型、输入提示和否定提示、上传二维码到 img2img 画布、设置图像到图像的相关参数、将二维码上传到 ControlNet 的图像画布并设置 ControlNet 的相关参数,最后按生成并用手机查看二维码。
2025-02-25