直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

什么时候可以实现agi

回答

目前关于通用人工智能(AGI)实现的时间存在多种推测和计划。据相关信息,OpenAI 原计划在 2026 年发布最初被称为 GPT-6 但后来重新命名为 GPT-7 的模型,然而由于埃隆·马斯克的诉讼而被暂停。计划在 2027 年发布的 Q* 2025(GPT-8)有望实现完全的 AGI。另外,OpenAI 总裁 Greg Brockman 在 2019 年表示,在微软投资 10 亿美元之后,OpenAI 计划在五年内构建一个与人类大脑大小相当的模型,即到 2024 年。但需要注意的是,这些信息多为推测和拼凑,且来源复杂,包括推特用户的搜集和 Longjumping-Sky-1971 的帖子等,大家可当作娱乐参考,自行辨别其可能性。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

OpenAI 通用人工智能(AGI)的计划被揭露

Q*的下一阶段,最初被称为GPT-6,但后来重新命名为GPT-7(原计划在2026年发布),由于埃隆·马斯克最近的诉讼而被暂停。计划在2027年发布的Q* 2025(GPT-8)将实现完全的AGI......Q* 2023 = 48智商Q* 2024 = 96智商(推迟)Q* 2025 = 145智商(推迟)埃隆·马斯克因为他的诉讼导致了推迟。这就是我现在揭示这些信息的原因,因为不会再造成进一步的伤害。我已经看过很多关于人工通用智能(AGI)的定义,但我将简单地将AGI定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。这是现在大多数人对这个词的定义。2020年是我第一次对一个AI系统感到震惊——那就是GPT-3。GPT-3.5是GPT-3的升级版本,也是ChatGPT背后的模型。当ChatGPT发布时,我感觉更广泛的世界终于赶上了我两年前就开始互动的东西。我在2020年广泛使用GPT-3,并对它的推理能力感到震惊。GPT-3及其半步后继者GPT-3.5(在2023年3月升级为GPT-4之前,它驱动了现在著名的ChatGPT)在某种程度上是朝着AGI迈出的巨大一步,而早期的模型则不是这样。需要注意的是,像GPT-2这样的早期语言模型(基本上自Eliza以来的所有聊天机器人)实际上没有真正连贯回应的能力。那么为什么GPT-3会有如此巨大的飞跃呢?

OpenAI 通用人工智能(AGI)的计划被揭露

作者:AIGC研修社源地址:https://mp.weixin.qq.com/s/z_KjoCXLoUflSZOla6pNpw内容来源于推特用户的搜集和推测,是各种报道和推文的拼凑猜测,大家可以当娱乐看,自行辨别文中推测的可能性。今天凌晨一篇名为《揭示OpenAI计划在2027年前实现通用人工智能(AGI)的计划》的google文档开始在网络上传播,这篇文档一共54页,是来自推特Jackson(@[vancouver1717](https://twitter.com/vancouver1717)),他搜集了目前网络上所有的公开资料来推论AGI已经实现,真是太刺激了,可以结合前几天马斯克告OpenAI违约,要求其公布进行中的AGI计划这个新闻,还有去年Ilya公开反对全体的董事会成员,开掉了CEO奥特曼,大家一直想知道Ilya究竟看到了什么?openai的AGI真的已经实现了么?我们可以一起来看看这篇揭露文档。以下是这篇文档的中文翻译。文末附上英文版PDF。在这份文件中,我将揭示我收集到的有关OpenAI(推迟)计划在2027年前创建人类水平的通用人工智能(AGI)的信息。并非所有信息都能轻易验证,但希望有足够的证据来说服你。摘要:OpenAI于2022年8月开始训练一个拥有125万亿参数的多模态模型。第一阶段被称为Arrakis,也叫做Q*。该模型于2023年12月完成训练,但由于高昂的推理成本,发布被取消了。这是原计划在2025年发布的GPT-5。Gobi(GPT-4.5)已被重新命名为GPT-5,因为原来的GPT-5已被取消。

OpenAI 通用人工智能(AGI)的计划被揭露

来自Longjumping-Sky-1971的两篇帖子。我之所以包含这些,是因为他提前几周准确预测了GPT-4的发布日期(没有人事先公开发布这些信息,这意味着他有一个内部信息源)。他的帖子现在更有可信度——他声称图像和音频生成将在2023年第三季度进行训练。如果视频生成训练是同时进行的或紧随其后,这与Siqi Chen声称GPT-5在2023年12月完成训练的说法相吻合。直到2020年2月,也就是GPT-3发布前几个月。一篇来自《技术评论》的文章,这是关于OpenAI的“内部故事”,似乎表明OpenAI正处于一个“秘密”项目的早期阶段,涉及一个在图像、文本和“其他数据”上训练的AI系统,而且OpenAI的领导层认为这是实现AGI最有希望的方式。我在想这可能指的是什么。接下来将展示来自OpenAI总裁的一些引述——来自2019年——它将告诉你他们的计划是什么。OpenAI的总裁Greg Brockman在2019年表示,在微软当时投资了10亿美元之后,OpenAI计划在五年内构建一个与人类大脑大小相当的模型,而这正是他们实现AGI的计划。2019 + 5 = 2024.这两个信息源显然都在提到同一个实现AGI的计划——一个与人类大脑大小相当的AI模型,将在“图像、文本和其他数据”上进行训练,计划在2019年之后的五年内完成训练,也就是到2024年。这似乎与我在这份文件中列出的所有其他信息源相吻合...正如我将在接下来的几张幻灯片中展示的,AI领域的领导者们突然开始敲响警钟——几乎就像他们知道一些非常具体的信息,而这些信息普通大众并不知道。“我曾经认为这还需要30到50年,甚至更长的时间。显然,我现在不再这么认为了。”来自CNN的报道AI之父离开google的新闻。

其他人在问
AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指能够像人类一样思考、学习和执行多种任务的人工智能系统。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,可根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 此外,AI 分为 ANI 和 AGI,ANI 得到巨大发展但 AGI 还没有取得巨大进展。ANI 即弱人工智能,只可做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
2024-11-22
什么是AGI
AGI 即强人工智能或通用人工智能,是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 AGI 的五个发展等级分别为: 1. 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织:最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 OpenAI 原计划在 2026 年发布的 Q 下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停,计划在 2027 年发布的 Q 2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。更多信息请见(AGI)。
2024-11-21
AGI 和RAG AGENT有什么区别
AGI(通用人工智能)、RAG(检索增强生成)和 Agent 存在以下区别: Agent: 本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。 包含短期记忆(messages 里的历史 QA 对)和长期记忆(summary 之后的文本塞回 system prompt)。 可以通过工具触发检索和 Action,触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互。 如 Multi Agents ,主要是更换 system prompt 和 tools 。 为 LLM 增加工具、记忆、行动、规划等能力,目前行业主要使用 langchain 框架,在 prompt 层和工具层完成设计。 有效使用工具的前提是全面了解工具的应用场景和调用方法,学习使用工具的方法包括从 demonstration 中学习和从 reward 中学习。 在追求 AGI 的征途中,具身 Agent 强调将智能系统与物理世界紧密结合,能够主动感知和理解物理环境并互动,产生具身行动。 RAG: 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。 AGI:是一种更广泛和全面的智能概念,旨在实现类似人类的通用智能能力。 需要注意的是,这些概念的发展和应用仍在不断演进,想做深做好还有很多需要探索和解决的问题。
2024-11-19
你觉得AGI是什么
AGI 即通用人工智能(Artificial General Intelligence),是指具有人类水平的智能和理解能力的人工智能系统。它能够完成任何聪明人类所能完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前,像 GPT3 及其半步后继者 GPT3.5(在 2023 年 3 月升级为 GPT4 之前,它驱动了现在著名的 ChatGPT)在某种程度上是朝着 AGI 迈出的巨大一步。但需要注意的是,强人工智能目前还只是一个理论概念,还没有任何 AI 系统能达到这种通用智能水平。 对于“智能”的定义较为模糊,阿兰·图灵提出了名为“图灵测试”的方法,该方法将某一计算机系统和真人进行比较,若人类评审员在文本对话中无法区分真人和计算机系统,那么这个计算机系统就会被认为是“智能”的。
2024-11-18
使用AGI写作
以下是关于使用 AGI 写作的相关内容: 利用 AI 打造爆款公众号文章: AI 生产文章的关键在于提供清晰且具指导性的提示词。基础提示词能生成基础文章,更详细和具创意的提示词能提升文章质量,如“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。”AI 生成的文章可能需要微调以符合预期和公众号风格,通常不到十分钟就能完成内容产出。 OpenAI 通用人工智能(AGI)的计划被揭露: 一家公司正在建造强大的 AI,它具备多种能力且不断获得新能力,工程师们在讨论其意义及可能带来的影响,包括工作过时、道德义务等。 通往 AGI 之路的相关教程: 1. (入门级,网速好时一小时能搞定) 2. 3. 作者 Allen 准备调整加强写作能力训练的工作流,先在飞书上发布初稿获取反馈再拆分细化。
2024-11-15
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
智能客服系统实现回复图片,不只是回复文字
以下为您介绍一个基于 COW 框架的 ChatBot 实现步骤,其最新版本支持的功能包括: 1. 多端部署:可接入个人微信、微信公众号、企业微信应用。 2. 基础对话:私聊及群聊的消息智能回复,支持多轮会话上下文记忆,支持 GPT3、GPT3.5、GPT4、文心一言模型。 3. 语音识别:可识别语音消息,通过文字或语音回复,支持 azure、baidu、google、openai 等多种语音模型。 4. 图片生成:支持图片生成和图生图(如照片修复),可选择 DellE、stable diffusion、replicate、Midjourney 模型。 5. 丰富插件:支持个性化插件扩展,已实现多角色切换、文字冒险、敏感词过滤、聊天记录总结等插件。 6. Tool 工具:与操作系统和互联网交互,支持最新信息搜索、数学计算、天气和资讯查询、网页总结,基于实现。 7. 知识库:通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用,基于 LinkAI 实现。 项目地址 项目地址 该项目的图片生成功能或许能满足您智能客服系统实现回复图片的需求。
2024-11-22
本群怎么实现的调用知识库
要实现本群对知识库的调用,可以通过以下两种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项。配置项说明如下: 最大召回数量:Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多。 最小匹配度:Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回。 调用方式:知识库的调用方式。自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:您需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。
2024-11-21
我想找一个能够实现运动控制逻辑的编程助手
目前在 AI 领域中,有一些编程助手可以帮助您实现运动控制逻辑。例如,您可以考虑使用 Python 中的相关库,如 `numpy`、`matplotlib` 等,结合数学和物理知识来构建运动控制模型。另外,一些专门的机器人编程框架和工具,如 ROS(Robot Operating System)也能为您提供支持。但具体选择哪种工具,还需要根据您的具体需求和技术背景来决定。
2024-11-20
实现将字符串'python中的各个字符以ASCII值的形式单独输出。 s= 'python' 1=0 while print ( 1+=1
以下是使用 Python 实现将字符串'python'中的各个字符以 ASCII 值的形式单独输出的代码: ```python s = 'python' i = 0 while i < len: print i += 1 ```
2024-11-20
哪些AI可以实现,把视频中的人声换成另外一个人的
以下是一些可以实现把视频中的人声换成另外一个人的 AI 工具和技术: 1. VoiceSwap 推出的 StemSwap 工具:这是一个基于浏览器的工具,允许用户从完全混音的曲目中轻松快速地更改人声。它可以将歌曲分成四部分,隔离人声,并将其转换为其他歌手的声音。用户可以从授权歌手名单中选择新声音,并下载完整混音或各个音轨。链接:https://www.voiceswap.ai/ 2. 深度伪造技术:利用 AI 程序和深度学习算法实现音视频模拟和伪造,投入深度学习的内容库越大,合成的视音频真实性越高。 3. 粉丝通过 Stems 音轨分离工具将人声与原始歌曲分离,再使用人声转换模型(如 DiffSVC)将人声转换成另一位明星的风格,然后将新的人声轨道与原始作品重新拼接在一起。 4. ViggleAI:由一支 15 人团队打造,核心能力是将视频中的角色替换成其他形象。其视频工具背后依赖自家训练的 3D 视频模型「JST1」,能够根据一张角色图片生成 360 度角色动画,可以进行更可控的视频生成。目前支持 Discord 访问和网页版访问,Discord 平台已经积累了超 400 万用户。网页版访问:https://www.viggle.ai/ 官方推特:https://x.com/ViggleAI
2024-11-20
脑机接口可以实现视力恢复吗
目前,悉尼科技大学开发了一种能够解码大脑中的想法并将其转换为文本的技术。随着大脑活动重建图像的技术成熟、大脑匹配视觉和听觉位置的系统完善以及无线脑机接口(BCI)的临床试验,脑机接口在医疗、宇宙探索、家庭、娱乐、游戏等多个场景有了应用的可能性。人类甚至可以在闭着眼睛的状态下进行信息获取、内容输出和娱乐体验。 相关技术链接: 大脑活动重建图像: 大脑匹配视觉和听觉位置: 无线脑机接口(BCI):[https://neuralink.com/blog/firstclinicaltrialopenfor 但就目前的技术水平而言,脑机接口在视力恢复方面还处于研究和探索阶段,尚未能完全实现视力的恢复。
2024-11-16