Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么叫节点式LLM驱动的 AI

Answer

节点式LLM(Large Language Model,大型语言模型)驱动的AI通常指的是利用大型语言模型作为核心处理引擎的人工智能系统。在这种架构中,LLM作为主要的处理节点,负责理解和生成语言,同时与其他系统或模块交互,以执行特定的任务或提供服务。

以下是节点式LLM驱动AI的几个关键特点:

  1. 中心化处理

    • LLM作为中心节点,处理大部分与语言相关的认知任务,如文本理解、内容生成、翻译等。
  2. 模块化设计

    • 系统可能由多个模块组成,其中LLM是核心模块,其他模块可能负责数据输入、输出、用户界面等。
  3. 并行处理能力

    • 节点式架构允许同时处理多个任务或请求,提高系统的效率和响应速度。
  4. 上下文理解

    • LLM能够处理复杂的上下文信息,提供更为精准的语言理解和生成。
  5. 多任务学习

    • 通过在不同的任务上训练,LLM可以扩展到多种应用场景,如医疗、法律、教育等。
  6. 可扩展性

    • 节点式架构易于扩展,可以根据需求增加更多的处理节点或改进现有节点。
  7. 集成与兼容性

    • 节点可以设计成与其他系统或服务兼容,方便集成到更大的工作流程中。
  8. 智能决策支持

    • LLM可以作为智能决策支持系统的一部分,提供基于语言分析的洞察和建议。
  9. 持续学习与优化

    • 节点式LLM可以持续从新的数据中学习,不断优化其性能。
  10. 安全性与隐私保护

    • 在设计时需考虑数据的安全性和隐私保护,确保用户信息的安全。

节点式LLM驱动的AI在实际应用中可以大大提高工作效率,尤其是在需要处理大量文本和语言交互的场景中。然而,这种系统的设计和部署需要考虑多方面的因素,包括技术能力、用户体验、安全性和伦理问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你使用Coze打造企业级知识库

工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数Coze平台支持的节点类型:LLM(大语言模型):使用输入参数和提示词生成处理结果。Code(代码):通过IDE编写代码处理输入参数,并返回输出值。Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。Condition(条件判断):if-else逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支Variable(获取变量):从Bot中获取变量作为参数在工作流中使用Database(数据库):在工作流中使用提前配置在Bot数据库中的数据

入门经典必读

我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。

Others are asking
好用的翻译ai
以下是一些好用的翻译 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 如果您想利用 AI 学习一门外语,可以参考以下方式: 1. 语言学习平台: FluentU:使用真实世界的视频,通过 AI 生成个性化的词汇和听力练习。选择学习语言,观看视频并完成相关练习,积累词汇和提升听力理解能力。 Memrise:结合 AI 技术,根据学习者的记忆曲线提供复习和练习,增强记忆效果。选择学习语言,使用应用提供的词汇卡和练习进行学习。 2. 发音和语法检查: Speechling:提供口语练习和发音反馈,帮助学习者改进口音和发音准确性。录制语音,提交给 AI 系统或人类教练,获取反馈和改进建议。 Grammarly:可以帮助您提高写作的语法和词汇准确性,支持多种语言。将写作内容粘贴到 Grammarly 编辑器中,获取语法和词汇改进建议。 3. 实时翻译和词典工具: Google Translate:提供实时翻译、语音输入和图像翻译功能,适合快速查找和学习新词汇。输入或语音输入需要翻译的内容,查看翻译结果和示例句子。 Reverso Context:提供单词和短语的翻译及上下文例句,帮助理解和学习用法。输入单词或短语,查看翻译和例句,学习实际使用场景。
2025-01-31
好用的手机翻译ai
以下为您推荐一些好用的手机翻译 AI 应用: 1. Hand Talk:能自动将文本或语音转换成美国手语。被联合国评为“世界上最佳的社交应用”,已翻译近 20 亿个单词。既是翻译工具,也是学习平台。相关链接:https://xiaohu.ai/p/5688 、https://x.com/imxiaohu/status/1777201503142601143
2025-01-31
零基础如何系统学习ai
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验,比如系统性的学习,不要碎片化的输入,一开始就去系统的看几本书,听几门好课。可以加入像这样的社区,按照新手指引入门。
2025-01-31
零基础如何系统学习ai?
对于零基础学习 AI,以下是一个系统的学习路径: 1. 了解 AI 基本概念: 阅读「」,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品创作作品。 知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用的第一手体验。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 体验 ChatGPT、Midjourney 等生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注权威媒体和学者,了解最新进展,思考 AI 技术对未来社会的影响,培养思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验: 系统性学习,打好基础,避免碎片化输入,通过看书听课进社区来学习。 加入 AI 社区,如,参考新手指引入门。
2025-01-31
怎么用AI写小学数学小课题
以下是利用 AI 写小学数学小课题的一些步骤和建议: 1. 确定课题主题:明确您对小学数学的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的小学数学研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、研究方法、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建研究方法:根据研究需求,利用 AI 建议的方法和技术来设计适合小学数学的研究方法。 7. 数据分析(若涉及):如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-01-31
学习ai
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-31
如何从零到一学习LLM上层AI应用开发
从零到一学习 LLM 上层 AI 应用开发,您可以参考以下步骤: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 以下是一些相关的学习资源: 面向开发者的 LLM 入门课程: 提示工程指南: LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: LLMs 九层妖塔: 在课程方面,欢迎来到针对开发者的 AIGPT 提示工程课程。该课程将分享软件开发最佳实践的提示,涵盖常见用例,包括总结、推理、转换和扩展,并指导使用 LLM 构建一个聊天机器人。在大型语言模型或 LLM 的开发中,大体上有基础 LLM 和指令调整后的 LLM 两种类型。基础 LLM 已训练出根据文本训练数据预测下一个单词,通常在大量数据上训练,以找出接下来最有可能的单词。
2025-01-28
从零到一的 LLM 学习教程
以下是从零到一学习 LLM 的教程: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 了解 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 运用 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 进行模型评估和可解释性研究。 实现模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为您推荐以下 LLM 开源中文大语言模型及数据集集合的学习资源: 1. 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。 2. 提示工程指南: 地址: 简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。 3. LangChain🦜️🔗中文网,跟着 LangChain 一起学 LLM/GPT 开发: 地址: 简介:Langchain 的中文文档,由是两个在 LLM 创业者维护,希望帮助到从刚进入 AI 应用开发的朋友们。 4. LLMs 九层妖塔: 地址: 简介:ChatGLM、ChineseLLaMAAlpaca、MiniGPT4、FastChat、LLaMA、gpt4all 等实战与经验。 关于 LLM 的预测原理: LLM 接触了包括教科书、文章、网站等在内的庞大数据集。在训练阶段,它们学会了理解语言的上下文和流动性,掌握了包括语法、风格,甚至是文本的语调等方面。当您用一个句子或问题来指导 LLM 时,它便利用自己所学的知识,预测接下来最可能的一个或几个词。这不仅是基于它在训练期间观察到的模式和规则的推测。 在提示工程方面,鉴于 LLM 的概率本质,提示工程师面临的挑战是如何引导 LLM 向着高度可预测和准确的结果方向发展。在相关课程中,您将学习许多技巧,这些技巧将帮助您掌握高度可预测的 LLM 输出结果的艺术和科学。但在深入学习之前,可以先从一些简单的练习开始,激活思维。
2025-01-28
llm cookbook 有资源吗
以下是关于 LLM 学习资源和 OpenAI Cookbook 的相关信息: 学习大型语言模型(LLM)开发的资源和路径: 1. 掌握深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 OpenAI Cookbook 资源: 如需更多灵感,请访问,其中包含示例代码以及指向第三方资源的链接,例如: 1. 2. 3. 4. 此外,还有 LLM 开源中文大语言模型及数据集集合中的相关资源: HuggingLLM: 地址: 简介:介绍 ChatGPT 原理、使用和应用,降低使用门槛,让更多感兴趣的非 NLP 或算法专业人士能够无障碍使用 LLM 创造价值。 OpenAI Cookbook: 地址: 简介:该项目是 OpenAI 提供的使用 OpenAI API 的示例和指导,其中包括如何构建一个问答机器人等教程,能够为从业人员开发类似应用时带来指导。
2025-01-14
Llm studio 联网搜索
以下是关于 LLM studio 联网搜索的相关内容: Cursor 方面: Cursor 适用于多种编程场景,如问答。在问答场景中,LLM 支持联网功能后,如 Claude、ChatGPT、Perplexity 等平台可咨询技术问题,能自动提炼关键字、联网搜索并总结分析搜索结果返回简洁答案,但答案置信率不高,而 Cursor 的上下文符号引用能力(如@Codebase 符号索引整个仓库)弥补了这一点,其将整个仓库 Embedding 成向量数据库供 LLM 消费,具备极强的私域知识理解能力,还能高效地帮用户分析总结各类项目的底层原理。 LLM Agent 方面: 工作步骤包括接收指令(用户通过文本、语音等方式发出指令或提出问题)、数据处理与理解(利用内部大语言模型解析用户输入,提取关键信息)、生成响应与执行任务(根据用户需求生成回答或采取行动,如查询数据库、搜索网络等)、输出结果(通过文本或语音将生成的结果反馈给用户)。 AIGC Weekly34 方面: 提出将 LLM 与互联网上的高质量内容结合来修复信息生态系统的问题,如 Metaphor 希望恢复搜索的神奇感,发布了 Metaphor API 用于将 LLM 连接到互联网。 介绍了 StarCraft II 作为强化学习环境的相关论文,提出了 AlphaStar Unplugged 基准测试。 提到了名为 Glean 的 AI 搜索工具能帮助用户在工作场景中进行搜索和优化,还讨论了人工智能人格模拟相关内容,如语言模型如何模拟和改变人格等。
2025-01-13
LLM输出的结果一致性如何保证
要保证 LLM 输出结果的一致性,可以采取以下几种策略: 1. Prompt 工程: 明确的待处理内容指引:在构建 Prompt 时,清晰地定义需要处理的文本,并使用标记框起来,让模型准确识别待处理内容范围,从中提取信息。 提供明确字段定义:具体化每个字段的名称、用途及要求,为 LLM 提供明确的提取方向和标准。 异常处理:设置异常处理原则,如规定缺失数据使用默认值填充,特殊数据类型符合标准格式,确保模型输出的完整性和一致性。 要求结构化输出:指示 LLM 以结构化格式(如 JSON)输出数据,便于后续处理和系统集成。 2. 自我一致性增强可靠性:促使 LLM 对同一问题产生多个答案,通过一致性审查衡量其可信度。一致性评估可从内容重叠、语义相似性评估及高级指标(如 BERT 分数或 ngram 重叠)等多方面进行,增强 LLM 在事实核查工具中的可靠性。 3. 衡量和评估不确定性:如牛津大学通过生成一个问题的多个答案,并使用另一个模型根据相似含义分组来衡量 LLM 不确定性。 4. 利用外部工具验证:如 Google DeepMind 推出的 SAFE,通过将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估 LLM 响应的真实性。 5. 借助其他 LLM 发现错误:如 OpenAI 推出的 CriticGPT,使用基于大量有缺陷输入数据集训练的 GPT 式 LLM 来发现其他 LLM 生成代码中的错误。 6. 利用 LLM 生成的评论增强 RLHF 的奖励模型:如 Cohere 使用一系列 LLM 为每个偏好数据对生成逐点评论,评估提示完成对的有效性。
2025-01-02
LLM是什么?
LLM(语言逻辑模型)是 LangChain 平台与各种大模型进行交互的核心模型,是一个能够处理语言输入和输出的抽象概念,可以理解为一个黑盒。 其输入是一个字符串,表示用户的请求或问题,输出也是一个字符串,表示模型的回答或结果。LLM 能根据不同输入调用不同大模型来完成不同语言任务,如文本生成、文本理解、文本翻译等。 从大模型的整体架构来看,LLM 处于模型层,例如 GPT 就是一种常见的 LLM,一般使用 transformer 算法实现。 LLM 的工作原理是像输入法的输入联想逻辑一样,一个字一个字地推理生成内容。通过将上下文加入输入,能帮助模型理解下一个字。但存在计算时带入全量数据算力吃不消以及仅算字的概率易被不相干信息干扰的问题,词向量机制和 transformer 模型中的 attention 自注意力机制解决了这些难题。
2025-01-02
在comfyUI中可以接入哪些节点
在 ComfyUI 中可以接入以下类型的节点: 1. 输入节点: 文本提示节点:用于输入生成图像的文本描述。 图像输入节点:用于输入基础图像进行二次生成。 噪声节点:用于输入初始噪声图像。 2. 处理节点: 采样器节点:选择图像生成所使用的采样器。 调度器节点:选择图像生成所使用的调度器。 CFG Scale 节点:调整引导式采样的强度。 步数节点:设置图像生成的迭代步数。 3. 输出节点: 图像输出节点:显示生成的最终图像。 4. 辅助节点: 批处理节点:支持批量生成多个图像。 图像变换节点:提供图像旋转、翻转等功能。 图像融合节点:可以将多个图像合并成一个。 此外,还有一些特定的节点插件,如: 1. PuLID 节点插件: model:使用预训练的基础文本到图像扩散模型,如 Stable Diffusion。 pulid:加载的 PuLID 模型权重,定义 ID 信息如何插入基础模型。 eva_clip:用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型。 face_analysis:使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部。 image:提供的参考图像用于插入特定 ID。 method:选择 ID 插入方法,如“fidelity”(优先保真度)、“style”(保留生成风格)和“neutral”(平衡两者)。 weight:控制 ID 插入强度,范围为 0 到 5。 start_at 和 end_at:控制在去噪步骤的哪个阶段开始和停止应用 PuLID ID 插入。 attn_mask:此选项用于提供灰度掩码图像,以控制 ID 自定义的应用位置,但并不是必需输入,而是可选输入。 Advanced Node:提供了高级节点,可以通过调整 fidelity 滑块和 projection 选项进行更精细的生成调优。 2. 中文提示词输入相关节点: 安装完成后,在【新建节点】【Alek 节点】下,有【预览文本】、【绘画】、【姿态】、【clip 文本编码器】和【翻译文本】这五个节点。 【clip 文本编码器(翻译)】可代替自带的【clip 文本编码器】,直接输入中文。但引用负向 embedding 时,文件夹路径不能有中文。 【翻译文本】节点可代替【元节点】,在 sdxl 流程中,当需要将文本信息单独列出来时使用。 【预览文本】节点可连接到【翻译文本】检查翻译是否正确。 如果翻译失效,可双击“embedded_instail”进行安装,然后用记事本打开 BaiduTranslate.py,填入在百度翻译开发平台申请的 ID 和密码,即可正常翻译。
2025-01-14
可以把tripo的节点接入comfyui吗
要将 tripo 的节点接入 ComfyUI,您可以参考以下步骤: 1. 确保后面有一个空格。然后将 requirements_win.txt 文件拖到命令提示符中(如果您在 Windows 上;否则,选择另一个文件 requirements.txt)。拖动文件将在命令提示符中复制其路径。 2. 按 Enter 键,这将安装所有所需的依赖项,使其与 ComfyUI 兼容。请注意,如果为 Comfy 使用了虚拟环境,必须首先激活它。 3. 在使用自定义节点之前,有一些要注意的事项: 您的图像必须放在一个以命名的文件夹中。那个数字很重要:LoRA 脚本使用它来创建一些步骤(称为优化步骤…但别问我是什么^^’)。它应该很小,比如 5。然后,下划线是必须的。 对于 data_path,您必须写入包含数据库文件夹的文件夹路径。例如:C:\\database\\5_myimages ,您必须写 C:\\database 。 Python 在这里需要斜杠,但节点会自动将所有反斜杠转换为斜杠。文件夹名称中的空格也不是问题。 4. 参数方面: 在第一行,您可以从 checkpoint 文件夹中选择任何模型。然而,据说您必须选择一个基本模型进行 LoRA 训练。 您选择一个名字为您的 LoRA,如果默认值对您不好,就更改这些值(epochs 数应该接近 40),然后启动工作流程! 5. 一旦您点击 Queue Prompt,所有事情都会在命令提示符中发生。 6. 建议与字幕自定义节点和 WD14 标签一起使用。但请注意,在制作字幕时禁用 LoRA 训练节点。因为 Comfy 可能会在制作字幕之前启动训练。 7. 关于 Tensorboard:训练会在 log 文件夹中创建一个日志文件,该文件夹会在 Comfy 的根文件夹中创建。该日志可能是一个可以在 Tensorboard UI 中加载的文件。 ComfyUI 的核心是其节点式界面,节点类型包括输入节点(如文本提示节点、图像输入节点、噪声节点)、处理节点(如采样器节点、调度器节点、CFG Scale 节点、步数节点)、输出节点(如图像输出节点)、辅助节点(如批处理节点、图像变换节点、图像融合节点)。用户可以通过拖放和连接各种节点来创建自定义的图像生成工作流,还可以创建自定义节点来扩展功能,自定义节点安装目录为 D:\\ComfyUI\\custom_nodes 。ComfyUI 还提供了丰富的节点管理功能,包括保存/加载节点图、复制/粘贴节点、批量编辑等。
2025-01-14
代码节点
以下是关于代码节点的详细介绍: 代码节点支持通过 IDE 编写 Python 或 JavaScript 脚本,用于处理输入参数并返回输出值。代码节点支持 JavaScript 和 Python 运行时。在节点内的代码区域,可以单击“在 IDE 中编辑”来进行代码的编辑和调试。 在使用代码节点时,尽量使用 JavaScript,并且尽量让 AI 去写。原则上能不写就不写,如果不熟悉,容易增加不必要的麻烦。 在一些工作流中,如制作卡片的工作流,会利用代码节点改变 HTML 展示的信息变量。同时,代码节点中的变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 工作流由多个节点构成,代码节点是其中的一种基本单元。扣子为您提供了多种基础节点,包括大语言模型节点、知识库节点、ifelse 逻辑节点等。不同节点可能需要不同的输入参数,输入参数分为引用和输入两类。引用是指引用前面节点的参数值,输入则是支持设定自定义的参数值。工作流默认包含 Start 节点和 End 节点,Start 节点是起始节点,可包含用户输入信息,End 节点是末尾节点,用于返回工作流的运行结果。
2025-01-10
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
coze合并代码节点
以下是关于 Coze 合并代码节点的相关内容: 在 Coze 上搭建工作流框架时,设定每个节点的逻辑关系很重要。对于「分段」、「拼合」代码节点设计,实际测试表明由于 LLM 的上下文长度有限,通常一次性输入输出的文本越长,生成时间越长,结果稳定性越低,特别是对生成结果格式要求较高时问题更突出。考虑到对照精读环节本身是逐段生成的,适合批处理形式,所以需要用「分段输入正文」,分割正文后用 LLM 节点批处理每一段的对照精读,最终「拼合精读结果」以输出完整文本。如果觉得编写代码脚本繁琐且仅进行文本处理,也可使用 LLM 节点配合适当 prompt 临时验证整个工作流。 在插件中心确定需要的插件时,先用关键词尝试性搜索,根据插件名称、介绍页、描述、参数、示例判断是否可能满足需求。有多个插件可选时,一般优选官方/高收藏/高成功率的插件以提升使用效果。若实际试用效果不行,则换用其他插件或自己编写上架插件。例如 TTS 文字转语音插件可通过搜索“语音”“文字转语音”“TTS”等相关关键词找到“英文文本转语音”插件;思维导图插件可通过搜索“脑图”“树图”“导图”“mindmap”等关键词找到“TreeMind 树图”插件。 Coze 工作流节点还包括大模型节点、代码节点和选择器节点。大模型节点可利用大语言模型生成文本内容,能选择所用大语言模型、设置生成内容随机度并编写提示词,提示词中支持使用{{variable}}引用输入参数。代码节点通过 IDE 编写 Python 或 JavaScript 脚本处理输入参数并返回输出值,支持 JavaScript 和 Python 运行时,尽量使用 JavaScript,尽量让 AI 去写,不熟悉时易增加麻烦。选择器节点是一个 ifelse 节点,用于设计工作流内的分支流程,每增加一个条件右边会多出一个点,点中拖到对应的下一级节点,输入参数时节点会判断是否符合“如果”区域条件,符合则执行对应分支,否则执行“否则”分支。
2025-01-09
请你给我提供一段coze工作流节点中,代码示例
以下是 Coze 工作流节点中的一些代码示例: 把段落按换行符(/n)拆分成数组的代码示例。 在大模型节点通过提示词和示例,让大模型直接输出数组。 使用文本处理(文本分隔)。 在 Coze 工作流中搭建框架时,首先进入 Coze,点击「个人空间工作流创建工作流」打开弹窗,根据弹窗要求自定义工作流信息,点击确认完成新建。左侧「选择节点」模块中,根据子任务需要,实际用到的有插件(提供能力工具)、大模型(实现文本内容生成)、代码(支持编写简单脚本处理数据)。按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成框架搭建。
2025-01-07
音频驱动视频
以下是关于音频驱动视频的相关信息: INFP:字节二元交互的新型音频驱动头部动画生成技术 用户输入一段对话音频,可以自动驱动两个数字人头像自然对话,不需要手动区分对话。AI 可以动态地在说话和聆听状态之间交替,实现自然的口型同步和头部与面部表情动作。它适应多种画风图像,支持歌唱、采访、对话(可以实现多 Agent 实时对话)等场景环境。 地址:https://grisoon.github.io/INFP/ LTX Studio:Face Expression 控制角色表情 LTX Studio 的新功能 Face Expression 可轻松完全控制角色的面部表情。可以从预设情绪中快速选择,在几秒钟内调整角色的表情,也可以使用自定义控件微调眼睛、嘴巴或眉毛等特定特征,打造所需的确切情感。 【TecCreative】帮助手册中的相关内容 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引:上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成。音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。 谷歌 Generating audio for video 为了生成更高质量的音频,并增加引导模型生成特定声音的能力,在训练过程中添加了更多信息,包括人工智能生成的注释,其中包含声音的详细描述和口语对话誊本。通过对视频、音频和附加注释进行训练,技术可以学会将特定音频事件与各种视觉场景联系起来,同时对注释或文本中提供的信息做出响应。
2025-01-24
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
请分点介绍数据驱动建模的特点。有图片就更好了
很抱歉,目前没有关于数据驱动建模特点的图片及相关详细内容。但一般来说,数据驱动建模具有以下几个特点: 1. 基于大量数据:依赖丰富的数据来构建模型,数据量越大,模型可能越准确。 2. 自动发现模式:能够自动从数据中挖掘和发现潜在的模式和规律。 3. 适应性强:可以根据新的数据进行调整和优化,以适应不断变化的情况。 4. 客观性:结果主要由数据决定,减少了主观因素的影响。 5. 预测能力:能够对未知的数据进行预测和推断。
2024-09-10
你是用什么底层模型驱动?
目前常见的 AI 模型驱动情况如下: 谷歌的 Bard 由各种基础模型驱动,最近是名为 PaLM 2 的模型。 Anthropic 发布了 Claude 2,Claude 最显著的特点是有一个非常大的上下文窗口。 OpenAI 制作了 GPT3.5 和 GPT4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问)。 ComfyUI Playground2.5 是一个根据文本提示生成图像的模型,它是一个使用两个固定的、预训练的文本编码器(OpenCLIPViT/G 和 CLIPViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL)。
2024-09-03
AI系统都是由ML驱动的吗
并非所有的AI系统都是由机器学习(ML)驱动的。AI(人工智能)是一个广泛的领域,涵盖了许多不同的技术和方法。以下是一些主要的AI方法,除了机器学习之外,还有其他关键技术: 1. 专家系统(Expert Systems) 专家系统是一种早期的AI方法,利用规则和知识库来模拟人类专家的决策过程。它们不依赖于机器学习,而是依靠预定义的规则集。 例子: 医疗诊断系统、故障诊断系统。 技术: 知识库、规则引擎。 2. 模糊逻辑(Fuzzy Logic) 模糊逻辑是一种处理不确定性和模糊性的技术,常用于控制系统和决策支持系统。 例子: 家电控制(如洗衣机、空调)。 技术: 模糊集、模糊规则。 3. 遗传算法(Genetic Algorithms) 遗传算法是一种基于自然选择和遗传学原理的优化技术,用于解决复杂的优化问题。 例子: 路径优化、调度问题。 技术: 选择、交叉、变异。 4. 进化计算(Evolutionary Computation) 进化计算是一组基于自然进化原理的算法,包括遗传算法、进化策略和遗传规划等。 例子: 自动设计、机器人控制。 技术: 自然选择、适应性、进化。 5. 推理和规划(Reasoning and Planning) 推理和规划涉及基于逻辑和规则进行自动推理和问题求解。 例子: 自动定理证明、任务规划。 技术: 谓词逻辑、状态空间搜索。 6. 神经网络(Neural Networks) 虽然神经网络是机器学习的一部分,但它们也可以单独被视为一种独立的方法,特别是深度学习(Deep Learning),这是近年来AI发展的主要驱动力。 例子: 图像识别、自然语言处理。 技术: 反向传播、卷积神经网络、递归神经网络。 7. 强化学习(Reinforcement Learning) 强化学习是一种通过与环境交互来学习策略的机器学习方法,特别适用于动态环境中的决策问题。 例子: 游戏AI、机器人控制。 技术: 马尔可夫决策过程、策略梯度。 8. 自然语言处理(Natural Language Processing, NLP) NLP是一个专注于人机语言交互的AI子领域,使用各种技术来处理和生成自然语言文本。 例子: 语音识别、机器翻译。 技术: 句法分析、语义分析、词向量。 总结 虽然机器学习,尤其是深度学习,近年来在AI领域取得了显著的进展,并在许多应用中占据主导地位,但AI并不仅限于机器学习。其他方法如专家系统、模糊逻辑和遗传算法等在特定领域中依然发挥着重要作用。选择哪种AI技术取决于具体的应用场景和问题需求。
2024-06-17