Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

什么叫节点式LLM驱动的 AI

Answer

节点式LLM(Large Language Model,大型语言模型)驱动的AI通常指的是利用大型语言模型作为核心处理引擎的人工智能系统。在这种架构中,LLM作为主要的处理节点,负责理解和生成语言,同时与其他系统或模块交互,以执行特定的任务或提供服务。

以下是节点式LLM驱动AI的几个关键特点:

  1. 中心化处理

    • LLM作为中心节点,处理大部分与语言相关的认知任务,如文本理解、内容生成、翻译等。
  2. 模块化设计

    • 系统可能由多个模块组成,其中LLM是核心模块,其他模块可能负责数据输入、输出、用户界面等。
  3. 并行处理能力

    • 节点式架构允许同时处理多个任务或请求,提高系统的效率和响应速度。
  4. 上下文理解

    • LLM能够处理复杂的上下文信息,提供更为精准的语言理解和生成。
  5. 多任务学习

    • 通过在不同的任务上训练,LLM可以扩展到多种应用场景,如医疗、法律、教育等。
  6. 可扩展性

    • 节点式架构易于扩展,可以根据需求增加更多的处理节点或改进现有节点。
  7. 集成与兼容性

    • 节点可以设计成与其他系统或服务兼容,方便集成到更大的工作流程中。
  8. 智能决策支持

    • LLM可以作为智能决策支持系统的一部分,提供基于语言分析的洞察和建议。
  9. 持续学习与优化

    • 节点式LLM可以持续从新的数据中学习,不断优化其性能。
  10. 安全性与隐私保护

    • 在设计时需考虑数据的安全性和隐私保护,确保用户信息的安全。

节点式LLM驱动的AI在实际应用中可以大大提高工作效率,尤其是在需要处理大量文本和语言交互的场景中。然而,这种系统的设计和部署需要考虑多方面的因素,包括技术能力、用户体验、安全性和伦理问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你使用Coze打造企业级知识库

工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数Coze平台支持的节点类型:LLM(大语言模型):使用输入参数和提示词生成处理结果。Code(代码):通过IDE编写代码处理输入参数,并返回输出值。Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。Condition(条件判断):if-else逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支Variable(获取变量):从Bot中获取变量作为参数在工作流中使用Database(数据库):在工作流中使用提前配置在Bot数据库中的数据

入门经典必读

我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。

如何使用 AI 来做事:一份带有观点的指南

当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。

Others are asking
openai 发布的sora最新模型中,生成视频的提示词与一般问答提示词有什么区别或者注意事项?
Sora 是 OpenAI 于 2024 年 2 月发布的文本到视频的生成式 AI 模型。 生成视频的提示词与一般问答提示词的区别和注意事项如下: 1. 对于视频生成,神经网络是单射函数,拟合的是文本到视频的映射。由于视频的动态性高,值域大,因此需要丰富且复杂的提示词来扩大定义域,以学好这个函数。 2. 详细的文本提示能迫使神经网络学习文本到视频内容的映射,加强对提示词的理解和服从。 3. 和 DALL·E 3 一样,OpenAI 用内部工具(很可能基于 GPT4v)给视频详尽的描述,提升了模型服从提示词的能力以及视频的质量(包括视频中正确显示文本的能力)。但这会导致在使用时的偏差,即用户的描述相对较短。OpenAI 用 GPT 来扩充用户的描述以改善这个问题,并提高使用体验和视频生成的多样性。 4. 除了文本,Sora 也支持图像或者视频作为提示词,支持 SDEdit,并且可以向前或者向后生成视频,因此可以进行多样的视频编辑和继续创作,比如生成首尾相连重复循环的视频,甚至连接两个截然不同的视频。 以下是一些 Sora 的案例提示词,如:“小土豆国王戴着雄伟的王冠,坐在王座上,监督着他们广阔的土豆王国,里面充满了土豆臣民和土豆城堡。”“咖啡馆的小地图立体模型,装饰着室内植物。木梁在上方纵横交错,冷萃咖啡站里摆满了小瓶子和玻璃杯。”“一张写有‘SORA’的写实云朵图像。”“一群萨摩耶小狗学习成为厨师的电影预告片‘cinematic trailer for a group of samoyed puppies learning to become chefs’”
2024-12-27
哪个AI伴写好一些
以下为您介绍关于 AI 伴写的相关内容: 在“他山之石|如何防止 AI 取代人类思考一切?”中,主要探讨了一些较为奇特和夸张的想法,并未直接涉及 AI 伴写的评价。 “陈财猫:如何用 AI 写出比人更好的文字?”提到了一些利用 AI 进行写作的实践方法,如从场景出发裂变、由假设出发衍生故事、利用特定流派的套路作为种子等,还介绍了故事灵感的裂变工具及效果。 “夙愿:AI 工作流,赋能我的十倍增长”中关于 AI 写作的观点认为,AI 虽能写出看似不错的文章,但不应完全依赖它来写作。写作不仅是产出内容,更是思考过程,对于想做 IP 账号的人,个人特色很关键。不过,AI 可在头脑风暴、查找资料、优化表达和拓展思路等方面成为写作的得力助手。 综合来看,目前没有明确指出哪个 AI 伴写更好,选择时需考虑自身需求和使用场景,合理利用 AI 辅助写作,提升写作效果。
2024-12-27
伴写文档AI
以下是关于伴写文档 AI 的相关内容: 一份关于 AI Liability Directive 的文档,其中包含了相关的标题、内容和多个文件编号,如 SEC344 final 等,还涉及到解释性备忘录、提案背景等方面。 南瓜博士指出,担心 AI 削弱孩子思考力是因为用法不对。在相关文章中提到,如果孩子用 AI 搜索回答封闭性问题迅速结束任务,AI 看似是好奇心的毒药;但改为开放性问题或让其帮助提出拓展思考的问题,能激发更大的好奇心。对于 AI 辅助写作文,若担心孩子偷懒,可让孩子提交与 AI 共同完成作文的聊天记录,由 AI 写作,孩子点评批改并让其迭代出更好的文章,评价重点在于孩子能否说清 AI 作文的优缺点及如何修改。
2024-12-27
前沿AI硬件
以下是关于前沿 AI 硬件的相关信息: 由郎瀚威 Will 发起的 GenAI 硬件榜单: 定义:利用 GenAI 技术(主要是 LLM),与音频生成、翻译、视觉采集并解读相结合,以可穿戴为主逐步渗透的新品类硬件,以 Meta 雷朋眼镜为代表。 本期情况:未收录较大的 GenAI 硬件如 AI PC、AI 手机,以可穿戴、AI 助理相关硬件为起点。 榜单受众:GenAI 硬件创始人、投资人、从业者等。 榜单标的:以北美市场的视角,销量、影响力为主。 榜单初心:随着 Meta 眼镜的成功,GenAI 硬件爆发在即,每月从多角度围观这一现象,旨在给创业者提供参考。 本次更新(9.19): 更新亚马逊销量、独立站流量、新品发布、融资信息,排序标准从媒体综合指数改为 Tiktok 热度。 完善挂件、戒指、眼镜等分类榜数据。 榜单目录:包括 GenAI 硬件北美公开销量榜、GenAI 硬件亚马逊销量榜等共 15 个重要榜单。更多榜单可文末点击“阅读原文”免费访问或直接访问飞书:https://zw73xyquvv.feishu.cn/wiki/IqcqwTDiYiKttNktBg3cg8HgnLh 。数据来源:google、tiktok、twitter、亚马逊。对于榜单内容有疑问想交流的 GenAI 硬件创始人,或者想合作转载内容的公众号博主,请加微信,或者在本文末留言。 今年很火的几款 AI native 硬件: Rewind Pendant:可穿戴设备,能捕捉现实中所说和听到的内容,进行录音转录、数据加密和本地存储,保障安全性和隐私保护。https://www.rewind.ai/pendant Rabbit R1:新型人工智能驱动的移动设备,通过高级语音命令简化应用程序使用,售价 199 美元,配备 360 度摄像头、触摸屏和 4G 连接。Rabbit OS 基于 Large Action Model(LAM 大动作模型),能处理自然语言并转化为可执行任务,与常见应用交互,支持语音命令执行复杂任务,未来用户可教会其执行特定任务。https://www.rabbit.tech/
2024-12-27
AI 3D建模
以下是一些 AI 3D 建模的工具和相关介绍: 1. Tripo AI:这是 VAST 发布的在线 3D 建模平台,基于数十亿参数级别的 3D 大模型,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型,支持快速的 2D 到 3D 转换,具有 AI 驱动的精准度和细节。在“Create”界面,可通过输入提示词(不支持中文)生成 3D 模型,每次生成 4 个基础模型,不满意可点击“Retry”重新生成,对满意的模型可点击“Refine”精修,精修进度在“My Models”中查看,约 5 分钟完成。 2. Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。用户上传图片并描述材质和风格可生成高质量 3D 模型。 3. CSM AI:支持从视频和图像创建 3D 模型,其 Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象再转换为 3D 模型。 4. Sudo AI:支持通过文本和图像生成 3D 模型,特别适用于游戏领域的模型生成。 5. VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供图像到 3D、文本到 3D 和文本到纹理等多种功能。 此外,provisual.app 是一个 3D 模型在线可视化平台,具有易于使用、无需特殊技能或软件、可节省时间和成本等优点,功能包括在线协作、实时渲染、无限视角、材质和纹理编辑、高质量输出等,适用于产品设计、营销、教育等领域,目标客户为营销机构、创意机构、包装公司、在线商店、设计院的设计师、美术师等。 这些工具通常具有用户友好的界面,允许用户通过简单的操作来生成 3D 模型,无需专业的 3D 建模技能,可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。
2024-12-27
什么是AI
AI 是一门令人兴奋的科学,它是指某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 对于没有理工科背景的人来说,可以将 AI 当成一个黑箱。最初,计算机是按照明确定义的程序来运算的,但对于像根据照片判断一个人的年龄这类无法明确编程的任务,正是 AI 所感兴趣的。 AI 健身是利用人工智能技术来辅助或改善健身训练和健康管理的方法,能为用户提供个性化的指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-12-27
LLM
系统学习 LLM 开发是一个系统性的过程,涵盖以下方面: 1. 掌握深度学习和自然语言处理基础:包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理:熟悉 Transformer 模型架构及自注意力机制原理,掌握 BERT 的预训练和微调方法,阅读相关论文如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调:进行大规模文本语料预处理,使用 LLM 预训练框架如 PyTorch、TensorFlow 等,微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署:掌握模型压缩、蒸馏、并行等优化技术,进行模型评估和可解释性研究,实现模型服务化、在线推理、多语言支持等。相关开源工具有 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习:结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态:关注顶会最新论文、技术博客等资源。 以下是 2 月 19 日的 Xiaohu.AI 日报相关内容: 1. Large World Model探索:介绍了百万 Token 的通用世界大模型,旨在理解长视频和超长文本。LWM 在 100 万个令牌的上下文中超越 GPT4V 和 Gemini Pro 的检索精度,特色能力包括长视频理解、高精度事实检索和多格式内容生成。相关链接:https://largeworldmodel.github.io 、https://github.com/LargeWorldModel/LWM 、https://x.com/xiaohuggg/status/1759566391693504940?s=20 2. 世界上最快的大型语言模型:Mixtral 8X7B 输出速度为 500 token/s,Llama 2 7B 的速度是 750 tokens/s,速度快但准确性有待提高。相关链接:http://groq.com 、http://wow.groq.com 、https://x.com/xiaohuggg/status/1759457147962941852?s=20 3. Reddit 用户自制 GLIGEN GUI:由于缺少直观的 GUI,一个 Reddit 大佬自己动手制作了一个。用户可以自定义图像中对象的大小、位置和空间关系,强调了用户对生成图像细节的控制能力。相关链接:https://github.com/mutex/gligengui 、https://gligen.github.io 、https://x.com/xiaohuggg/status/1759431911951450437?s=20
2024-12-24
LLM 提示词怎么写
以下是关于 LLM 提示词编写的相关内容: 在“艾木:提示词编程|有必要用 Lisp 语言写提示词吗?”中,“小确幸”这段提示词用 Lisp 语言描述了一个简单工作流,包含对用户输入文本的处理和生成 SVG 卡片等步骤,内部还有一系列子步骤和 fewshot examples。但大语言模型按程序描述的逻辑运行这类复杂程序有难度。 在“走入 AI 的世界”中,提示词(Prompt)是输入给大模型的文本内容,其质量会显著影响大模型回答的质量。 在“藏师傅教你用 AI 三步制作任意公司的周边图片,不用到处找样机文件”中,介绍了用 LLM 生成图像提示词的流程,包括获取 Logo 图片的描述,根据描述和生成意图生成图片提示词,将图片和提示词输入 Comfyui 工作生成等步骤,并给出了相关示例。
2024-12-16
开源的开源的 LLM 微调推理,agent开发平台
以下是为您整理的关于开源的 LLM 微调推理、agent 开发平台的相关内容: LLM 作为 Agent 的“大脑”的特点: 1. 知识获取能力:通过预训练学习大量语言数据,掌握丰富语言信息和常识知识,能处理多种任务。 2. 指令理解:擅长解析人类语言指令,采用深度神经网络进行自然语言理解和生成,精准理解意图。 3. 泛化能力:在未见过的数据上表现良好,能利用先前知识处理新挑战,形成对语言结构的通用理解。 4. 推理和规划:能够进行逻辑推理和未来预测,分析条件制定最佳行动方案,在复杂环境中做出理性选择。 5. 交互能力:拥有强大对话能力,在多人多轮次对话中自然流畅交流,改善用户体验。 6. 自我改进:基于用户反馈和效果评估,通过调整参数、更新算法提升性能和准确性。 7. 可扩展性:可根据具体需求定制化适配,针对特定领域数据微调提高处理能力和专业化水平。 相关产品和平台: 1. ComfyUI:可在其中高效使用 LLM。 2. Vercel AI SDK 3.0:开源的工具,可将文本和图像提示转换为 React 用户界面,允许开发者创建丰富界面的聊天机器人。 3. OLMo7BInstruct:Allen AI 开源的微调模型,可通过资料了解从预训练模型到 RLHF 微调模型的所有信息并复刻微调过程。 4. Devv Agent:能提供更准确、详细的回答,底层基于 Multiagent 架构,根据需求采用不同 Agent 和语言模型。 实例探究: 1. ChemCrow:特定领域示例,通过 13 个专家设计的工具增强 LLM,完成有机合成、药物发现和材料设计等任务。 2. Boiko et al. 研究的 LLM 授权的科学发现 Agents:可处理复杂科学实验的自主设计、规划和执行,能使用多种工具。
2024-12-12
LLM 和 AI Agent的区别
LLM(大型语言模型)和 AI Agent(人工智能智能体)存在以下区别: LLM 主要侧重于语言的理解和生成,具有强大的语言处理能力。它们在大规模语料库上进行预训练,能够通过少量样本展现出泛化能力。然而,其缺点是计算资源消耗大,可能存在偏见和误解。 AI Agent 则为人工智能应用程序提供了全新的功能,包括解决复杂问题、对外界采取行动以及在部署后从经验中学习。它们通过高级推理/规划、工具使用、记忆/递归/自我反思的组合来实现这些功能。AI Agent 能够进行令人难以置信的演示,但目前大多数框架仍处于概念验证阶段,还不能可靠、可重现地完成任务。 基于 LLM 的 AI Agent 以 LLM 置于“大脑”或“控制器”的核心位置,赋予强大的语言理解和生成能力。为扩展感知和行动范围,采用多模态感知技术和工具利用策略,能理解和响应多种类型输入,并与环境有效互动。通过思维链和问题分解技术展现出推理和规划能力,还能从反馈中学习并执行新行动,表现出类似反应式 Agent 的特性。其已在软件开发、科学研究等现实场景中应用,能利用自然语言理解和生成能力与其他 Agent 交流协作。特点是基于大规模神经网络,特别是 Transformer 架构,技术上有 Llama、GPT 等预训练大型语言模型,优点是强大的语言理解、生成和对话能力,缺点是计算资源消耗大,可能存在偏见和误解。
2024-12-09
如何调教LLM写好提示词
以下是关于调教 LLM 写好提示词的相关内容: 1. 无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高使用成功率。识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,若接口不接受,可改为回传给 user 角色。 2. 藏师傅教您用 AI 三步制作任意公司的周边图片: 整个流程分为三个部分:获取 Logo 图片的描述、根据 Logo 图片的描述和生成意图生成图片提示词、将图片和提示词输入 Comfyui 工作生成。 用下面的提示词生成关于 Logo 图片的描述:为帮助视障艺术家,需详细描述图像内容,包括摄影、标志设计等方面,控制在 50 字左右。 用 LLM 生成图像提示词:将第一步生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。 3. 小七姐:Prompt Engineering a Prompt Engineer 精读翻译: 提示词工程是优化大型语言模型性能的具有挑战性但至关重要的任务,需要复杂推理检查模型错误等。 研究了“PROMPT ENGINEERING A PROMPT ENGINEER”的问题,介绍并分析关键组成部分,如逐步推理模板和上下文规范等。 最终方法 PE2 在多个数据集和任务中表现出色,能进行有意义和针对性的提示词编辑,展现出反事实推理能力。
2024-12-08
LLM对未来的影响有哪些
LLM 对未来的影响主要体现在以下几个方面: 1. 应用程序架构:代理有可能成为 LLM 应用程序架构的核心部分,为人工智能应用程序提供解决复杂问题、对外界采取行动以及从经验中学习等全新功能。但目前大多数代理框架仍处于概念验证阶段。 2. 能力拓展:未来的大型语言模型将能够读取和生成文本,拥有更丰富的知识,能利用现有软件基础架构,具备查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考、在特定领域自我优化以及针对特定任务定制和调整等能力。 3. 落地应用:LLM 技术正从 demo 向落地阶段发展,在达到一定水平后,其在各个业务场景中的实用性将大大提升。但当前大部分应用仍处于探索阶段,在推理、训练学习效率等方面还有待提高,且与视觉、触觉等技术的搭配尚未成熟。同时,关于数据驱动的概率模型和由第一性原理建立的数理模型如何更好地模拟世界以及两者的融合方式仍有待解决。在应用方面,包括自然语言、ToB、ToC 等领域。
2024-12-03
在comfyui中节点报错UNETLoader Error
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错 UNETLoader Error”这一信息,无法明确具体的错误原因和给出准确的解决方案。可能导致此报错的原因有多种,比如模型文件损坏、加载路径错误、相关依赖未正确安装等。建议您进一步检查报错的详细信息、模型文件的完整性以及相关配置是否正确。
2024-12-04
在comfyui中节点报错UNETLoader Error while deserializing header: MetadatalncompleteBuffei
很抱歉,仅根据您提供的“在 ComfyUI 中节点报错‘UNETLoader Error while deserializing header: MetadatalncompleteBuffei’”的信息,难以准确判断问题的具体原因和解决办法。这可能是由于多种因素导致的,比如模型文件损坏、软件版本不兼容、配置错误等。建议您检查模型文件的完整性,确保 ComfyUI 软件为最新版本,并检查相关配置是否正确。如果问题仍然存在,您可以尝试在相关的技术论坛或社区中搜索类似问题,以获取更多可能的解决方案。
2024-12-04
coze工作流中提示词优化节点有吗?
在 Coze 工作流中存在提示词优化节点。这个节点比较容易理解,如果觉得提示词需要优化,可加入该节点进行处理。其参数很简单,只有一个要优化的提示词。例如,用一开始就在用的文生图提示词“1 girl in real world”进行试用。优化后添加了很多具体信息,如在带着好奇心看书,环境中有阳光,色彩搭配的特点等。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制真实图片生成的效果比“realistic”好。
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。其参数很简单,只有一个要优化的提示词。 通常这类节点很好用。例如用一开始就在用的文生图提示词“1 girl in real world”来试试。优化前和优化后都生成一张图做效果对比,它会为我们添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片为真实照片的感觉上,测试结果中文生图模型中“in real world”来控制更真实的图片生成效果比“realistic”效果好。(喜欢哪个见仁见智,不过也有抽卡因素,至少右边的打光感觉不错。)
2024-11-16
coze中提示词优化节点怎么加
在 Coze 中添加提示词优化节点的方法如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。 参数很简单,只有一个要优化的提示词。 例如,用一开始就在用的文生图提示词“1 girl in real world”来试用。优化后会为提示词添加很多具体信息,比如在带着好奇心看书,环境中有阳光,色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”来控制比“realistic”效果好。
2024-11-16
coze中的提示词优化节点在哪里
在 Coze 中,提示词优化节点的相关信息如下: 这个节点比较容易理解,如果觉得提示词需要优化,可以加入它进行优化。参数很简单,只有一个要优化的提示词。 以文生图提示词“1 girl in real world”为例进行试用,优化后添加了很多具体信息,如在带着好奇心看书、环境中有阳光、色彩搭配的特点。但修改后的提示词在控制图片生成真实照片的感觉方面,“in real world”控制效果比“realistic”好。 此外,Coze 还涉及其他节点,如智能抠图、画质提升等。在复刻吴恩达开源的 AI 翻译项目时,工作流分为新建工作流、导入核心流程、设置节点等步骤,包括选择翻译的源语言和目标语言、选择大模型、配置反思优化的提示词等。
2024-11-16
AI驱动的自动化任务在PC端
以下是为您介绍的两个与 AI 驱动的自动化任务在 PC 端相关的产品: 1. Design Buddy:这是一个 Figma 插件,作为协作伙伴发挥作用,能对 UI 设计提供深入反馈。它涵盖布局、颜色、排版、可访问性等方面的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中常被忽视的缺陷,减少未来修订需求。 2. AI Employe:这是一个开源、由 GPT4 视觉驱动的工具,用于自动化浏览器环境中的复杂任务。用户可通过在浏览器中概述和演示任务来创建工作流程,它能自动执行类人智能任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统,只记录浏览器更改,不捕获屏幕、麦克风或摄像头,还能从图表、复杂表格和基于图像的 OCR 提供独特见解。
2024-12-26
请分点介绍数据驱动建模的特点。有图片就更好了
很抱歉,目前没有关于数据驱动建模特点的图片及相关详细内容。但一般来说,数据驱动建模具有以下几个特点: 1. 基于大量数据:依赖丰富的数据来构建模型,数据量越大,模型可能越准确。 2. 自动发现模式:能够自动从数据中挖掘和发现潜在的模式和规律。 3. 适应性强:可以根据新的数据进行调整和优化,以适应不断变化的情况。 4. 客观性:结果主要由数据决定,减少了主观因素的影响。 5. 预测能力:能够对未知的数据进行预测和推断。
2024-09-10
你是用什么底层模型驱动?
目前常见的 AI 模型驱动情况如下: 谷歌的 Bard 由各种基础模型驱动,最近是名为 PaLM 2 的模型。 Anthropic 发布了 Claude 2,Claude 最显著的特点是有一个非常大的上下文窗口。 OpenAI 制作了 GPT3.5 和 GPT4,它们驱动了 ChatGPT 和微软的 Bing(在 Edge 浏览器上访问)。 ComfyUI Playground2.5 是一个根据文本提示生成图像的模型,它是一个使用两个固定的、预训练的文本编码器(OpenCLIPViT/G 和 CLIPViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL)。
2024-09-03
AI系统都是由ML驱动的吗
并非所有的AI系统都是由机器学习(ML)驱动的。AI(人工智能)是一个广泛的领域,涵盖了许多不同的技术和方法。以下是一些主要的AI方法,除了机器学习之外,还有其他关键技术: 1. 专家系统(Expert Systems) 专家系统是一种早期的AI方法,利用规则和知识库来模拟人类专家的决策过程。它们不依赖于机器学习,而是依靠预定义的规则集。 例子: 医疗诊断系统、故障诊断系统。 技术: 知识库、规则引擎。 2. 模糊逻辑(Fuzzy Logic) 模糊逻辑是一种处理不确定性和模糊性的技术,常用于控制系统和决策支持系统。 例子: 家电控制(如洗衣机、空调)。 技术: 模糊集、模糊规则。 3. 遗传算法(Genetic Algorithms) 遗传算法是一种基于自然选择和遗传学原理的优化技术,用于解决复杂的优化问题。 例子: 路径优化、调度问题。 技术: 选择、交叉、变异。 4. 进化计算(Evolutionary Computation) 进化计算是一组基于自然进化原理的算法,包括遗传算法、进化策略和遗传规划等。 例子: 自动设计、机器人控制。 技术: 自然选择、适应性、进化。 5. 推理和规划(Reasoning and Planning) 推理和规划涉及基于逻辑和规则进行自动推理和问题求解。 例子: 自动定理证明、任务规划。 技术: 谓词逻辑、状态空间搜索。 6. 神经网络(Neural Networks) 虽然神经网络是机器学习的一部分,但它们也可以单独被视为一种独立的方法,特别是深度学习(Deep Learning),这是近年来AI发展的主要驱动力。 例子: 图像识别、自然语言处理。 技术: 反向传播、卷积神经网络、递归神经网络。 7. 强化学习(Reinforcement Learning) 强化学习是一种通过与环境交互来学习策略的机器学习方法,特别适用于动态环境中的决策问题。 例子: 游戏AI、机器人控制。 技术: 马尔可夫决策过程、策略梯度。 8. 自然语言处理(Natural Language Processing, NLP) NLP是一个专注于人机语言交互的AI子领域,使用各种技术来处理和生成自然语言文本。 例子: 语音识别、机器翻译。 技术: 句法分析、语义分析、词向量。 总结 虽然机器学习,尤其是深度学习,近年来在AI领域取得了显著的进展,并在许多应用中占据主导地位,但AI并不仅限于机器学习。其他方法如专家系统、模糊逻辑和遗传算法等在特定领域中依然发挥着重要作用。选择哪种AI技术取决于具体的应用场景和问题需求。
2024-06-17