节点式LLM(Large Language Model,大型语言模型)驱动的AI通常指的是利用大型语言模型作为核心处理引擎的人工智能系统。在这种架构中,LLM作为主要的处理节点,负责理解和生成语言,同时与其他系统或模块交互,以执行特定的任务或提供服务。
以下是节点式LLM驱动AI的几个关键特点:
中心化处理:
模块化设计:
并行处理能力:
上下文理解:
多任务学习:
可扩展性:
集成与兼容性:
智能决策支持:
持续学习与优化:
安全性与隐私保护:
节点式LLM驱动的AI在实际应用中可以大大提高工作效率,尤其是在需要处理大量文本和语言交互的场景中。然而,这种系统的设计和部署需要考虑多方面的因素,包括技术能力、用户体验、安全性和伦理问题。
工作流是由多个节点构成,节点是组成工作流的基本单元。节点的本质就是一个包含输入和输出的函数Coze平台支持的节点类型:LLM(大语言模型):使用输入参数和提示词生成处理结果。Code(代码):通过IDE编写代码处理输入参数,并返回输出值。Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。Condition(条件判断):if-else逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支Variable(获取变量):从Bot中获取变量作为参数在工作流中使用Database(数据库):在工作流中使用提前配置在Bot数据库中的数据
我们首先对Transformer和Latent Diffusion(潜在扩散)模型进行了简单的介绍,这些模型正在推动当前的AI浪潮。接下来,我们深入研究了技术学习资源;构建大型语言模型(LLMs)的实用指南;以及AI市场的分析。最后,我们列出了一份里程碑式研究成果的参考列表,从2017年谷歌发布的“Attention is All You Need”开始——这篇论文向世界介绍了Transformer模型,并开启了生成AI的时代。
当我们现在谈论人工智能时,我们通常谈论的是大型语言模型或简称为LLMs。大多数AI应用程序都由LLM驱动,其中只有几个基础模型,由少数几个组织创建。每家公司都通过聊天机器人直接访问他们的模型:OpenAI制作了GPT-3.5和GPT-4,它们驱动了[ChatGPT](https://chat.openai.com/)和微软的[Bing](https://www.bing.com/search?q=Bing+AI&showconv=1&FORM=hpcodx&sydconv=1)(在Edge浏览器上访问)。Google在[Bard](https://bard.google.com/)的标签品牌下有各种模型。Anthropic制造了Claude和[Claude 2](https://claude.ai/)。